Publications by authors named "Versaw W"

The concentration of inorganic phosphate (Pi) in the chloroplast stroma must be maintained within narrow limits to sustain photosynthesis and to direct the partitioning of fixed carbon. However, it is unknown if these limits or the underlying contributions of different chloroplastic Pi transporters vary throughout the photoperiod or between chloroplasts in different leaf tissues. To address these questions, we applied live Pi imaging to Arabidopsis (Arabidopsis thaliana) wild-type plants and 2 loss-of-function transporter mutants: triose phosphate/phosphate translocator (tpt), phosphate transporter 2;1 (pht2;1), and tpt pht2;1.

View Article and Find Full Text PDF

Arbuscular mycorrhizal (AM) symbiosis is accompanied by alterations to root cell metabolism and physiology, and to the pathways of orthophosphate (Pi) entry into the root, which increase with Pi delivery to cortical cells via arbuscules. How AM symbiosis influences the Pi content and Pi response dynamics of cells in the root cortex and epidermis is unknown. Using fluorescence resonance energy transfer (FRET)-based Pi biosensors, we mapped the relative cytosolic and plastidic Pi content of Brachypodium distachyon mycorrhizal root cells, analyzed responses to extracellular Pi and traced extraradical hyphae-mediated Pi transfer to colonized cells.

View Article and Find Full Text PDF

The availability of inorganic phosphate (Pi) limits plant growth and crop productivity on much of the world's arable land. To better understand how plants cope with deficient and variable supplies of this essential nutrient, we used Pi imaging to spatially resolve and quantify cytosolic Pi concentrations and the respective contributions of Pi uptake, metabolic recycling, and vacuolar sequestration to cytosolic Pi homeostasis in Arabidopsis () roots. Microinjection coupled with confocal microscopy was used to calibrate a FRET-based Pi sensor to determine absolute, rather than relative, Pi concentrations in live plants.

View Article and Find Full Text PDF

Matching ATP:NADPH provision and consumption in the chloroplast is a prerequisite for efficient photosynthesis. In terms of ATP:NADPH ratio, the amount of ATP generated from the linear electron flow does not meet the demand of the Calvin-Benson-Bassham (CBB) cycle. Several different mechanisms to increase ATP availability have evolved, including cyclic electron flow in higher plants and the direct import of mitochondrial-derived ATP in diatoms.

View Article and Find Full Text PDF

The use of nano zerovalent iron (nZVI) for arsenate (As(V)) remediation has proven effective, but full-scale injection of nZVI into the subsurface has aroused serious concerns for associated environmental risks. This study evaluated the efficacy of nZVI treatment for arsenate remediation and its potential hazards to plants using Arabidopsis thaliana grown in a hydroponic system. Biosensors for inorganic phosphate (Pi) and MgATP were used to monitor in vivo Pi and MgATP levels in plant cells.

View Article and Find Full Text PDF

Nitrogen and phosphorus are macronutrients indispensable for plant growth. The acquisition and reallocation of both elements require a multitude of dedicated transporters that specifically recognize inorganic and organic forms of nitrogen and phosphorous. Although many transporters have been discovered through elegant screening processes and sequence homology, many remain uncharacterized for their functions in planta.

View Article and Find Full Text PDF

Phosphate (Pi) is an essential macronutrient with structural and metabolic roles within every compartment of the plant cell. Intracellular Pi transporters direct Pi to each organelle and also control its exchange between subcellular compartments thereby providing the means to coordinate compartmented metabolic processes, including glycolysis, photosynthesis, and respiration. In this review we summarize recent advances in the identification and functional analysis of Pi transporters that localize to vacuoles, chloroplasts, non-photosynthetic plastids, mitochondria, and the Golgi apparatus.

View Article and Find Full Text PDF

Genetically encoded Förster resonance energy transfer (FRET)-based biosensors have been used to report relative concentrations of ions and small molecules, as well as changes in protein conformation, posttranslational modifications, and protein-protein interactions. Changes in FRET are typically quantified through ratiometric analysis of fluorescence intensities. Here we describe methods to evaluate ratiometric imaging data acquired through confocal microscopy of a FRET-based inorganic phosphate biosensor in different cells and subcellular compartments of Arabidopsis thaliana.

View Article and Find Full Text PDF

Inorganic phosphate (Pi) has central roles in metabolism, cell signaling and energy conversion. The distribution of Pi to each cell and cellular compartment of an animal must be tightly coordinated with its dietary supply and with the varied metabolic demands of individual cells. An analytical method for monitoring Pi dynamics with spatial and temporal resolution is therefore needed to gain a comprehensive understanding of mechanisms governing the transport and recycling of this essential nutrient.

View Article and Find Full Text PDF

The Arabidopsis phosphate transporter PHT4;1 was previously localized to the chloroplast thylakoid membrane. Here we investigated the physiological consequences of the absence of PHT4;1 for photosynthesis and plant growth. In standard growth conditions, two independent Arabidopsis knockout mutant lines displayed significantly reduced leaf size and biomass but normal phosphorus content.

View Article and Find Full Text PDF

Despite variable and often scarce supplies of inorganic phosphate (Pi) from soils, plants must distribute appropriate amounts of Pi to each cell and subcellular compartment to sustain essential metabolic activities. The ability to monitor Pi dynamics with subcellular resolution in live plants is, therefore, critical for understanding how this essential nutrient is acquired, mobilized, recycled, and stored. Fluorescence indicator protein for inorganic phosphate (FLIPPi) sensors are genetically encoded fluorescence resonance energy transfer-based sensors that have been used to monitor Pi dynamics in cultured animal cells.

View Article and Find Full Text PDF

Nonphotosynthetic plastids are important sites for the biosynthesis of starch, fatty acids, and amino acids. The uptake and subsequent use of cytosolic ATP to fuel these and other anabolic processes would lead to the accumulation of inorganic phosphate (Pi) if not balanced by a Pi export activity. However, the identity of the transporter(s) responsible for Pi export is unclear.

View Article and Find Full Text PDF

Plastids rely on multiple phosphate (Pi) transport activities to support and control a wide range of metabolic processes, including photosynthesis and carbon partitioning. Five of the six members of the PHT4 family of Pi transporters in Arabidopsis thaliana (PHT4;1-PHT4;5) are confirmed or predicted plastid proteins. As a step towards identifying the roles of individual PHT4 Pi transporters in chloroplast and non-photosynthetic plastid Pi dynamics, we used promoter-reporter gene fusions and quantitative RT-PCR studies, respectively, to determine spatial and diurnal gene expression patterns.

View Article and Find Full Text PDF

Phosphorus is one of the essential mineral nutrients required by all living cells. Plants assimilate phosphate (Pi) from the soil, and their root systems encounter tremendous variation in Pi concentration, both temporally and spatially. Genome sequence data indicate that plant genomes contain large numbers of genes predicted to encode Pi transporters, the functions of which are largely unexplored.

View Article and Find Full Text PDF

The transport of phosphate (Pi) between subcellular compartments is central to metabolic regulation. Although some of the transporters involved in controlling the intracellular distribution of Pi have been identified in plants, others are predicted from genetic, biochemical and bioinformatics studies. Heterologous expression in yeast, and gene expression and localization in plants were used to characterize all six members of an Arabidopsis thaliana membrane transporter family designated here as PHT4.

View Article and Find Full Text PDF

Forward genetic analysis is the most broadly applicable approach to discern gene functions. However, for some organisms like the filamentous ascomycete Neurospora crassa, genetic mapping frequently represents a limiting step in forward genetic approaches. We describe an efficient method for genetic mapping in N.

View Article and Find Full Text PDF

• Phosphate is essential for many cellular processes including the light reactions of photosynthesis. Photosynthesis results in the production of triose phosphates that are transported across the chloroplast envelope to the cytosol in counterexchange for phosphate. Until recently, members of the plastid phosphate transport family, which mediate the exchange of phosphate for phosphorylated compounds, were the only proteins known to transport phosphate into the chloroplast.

View Article and Find Full Text PDF

The uptake and distribution of Pi in plants requires multiple Pi transport systems that must function in concert to maintain homeostasis throughout growth and development. The Pi transporter PHT2;1 of Arabidopsis shares similarity with members of the Pi transporter family, which includes Na(+)/Pi symporters of fungal and animal origin and H(+)/Pi symporters of bacterial origin. Sequence comparisons between proteins of this family revealed that plant members possess extended N termini, which share features with chloroplast transit peptides.

View Article and Find Full Text PDF

Arbuscular mycorrhizas are endosymbiotic associations formed between obligately biotrophic arbuscular mycorrhizal (AM) fungi and plant roots. The fungus and plant coexist in intimate contact as the fungus grows within the cortex of the root. RNA isolated from arbuscular mycorrhizas contains transcripts from both eukaryotic genomes.

View Article and Find Full Text PDF

Two rapid and simple in planta transformation methods have been developed for the model legume Medicago truncatula. The first approach is based on a method developed for transformation of Arabidopsis thaliana and involves infiltration of flowering plants with a suspension of Agrobacterium. The second method involves infiltration of young seedlings with Agrobacterium.

View Article and Find Full Text PDF

Activation of the mitogen-activated protein kinase (MAPK) pathway enhances long-range transactivation by the beta-globin locus control region (LCR) (W. K. Versaw, V.

View Article and Find Full Text PDF

The human beta-globin locus control region (LCR), which consists of four erythroid-specific DNase I hypersensitive sites (HS1-HS4), functions over a long distance to control the transcription, chromatin structure, and replication of the beta-globin genes. We have used stable transfection assays to show that activation of the mitogen-activated protein (MAP) kinase pathway by low concentrations of the phorbol ester phorbol 12-tetradecanoate 13-acetate (TPA) induces enhancer activity of the LCR subregion HS2, but not HS3. Although HS2 enhancer activity is diminished with increasing distance from the promoter, the relative level of induction by TPA is independent of HS2-promoter distance.

View Article and Find Full Text PDF

To study, in vivo, potential P(i)-water oxygen exchange catalyzed by each of two high-affinity P(i) symporters of Neurospora crassa, we have developed methods for the purification of P(i) from whole-cell extracts and the subsequent derivatization of P(i) for analysis by GC-MS. We have also modified a published procedure for the preparation of 18O-P(i). However, the high background rate of transport-independent oxygen exchange, determined by monitoring the appearance of 18O-P(i) in cells incubated in the presence of H(2)18O, masks detection of any transport-dependent oxygen exchange which may occur.

View Article and Find Full Text PDF

A transgenic position effect that causes activator-independent gene expression has been described previously for three Neurospora crassa phosphate-repressible genes. We report analogous findings for two additional positively regulated genes, qa-2+ and ars-1+, indicating that such position effects are not limited to genes involved in phosphorus metabolism. In addition, we have characterized a number of mutants that display activator-independent gene expression.

View Article and Find Full Text PDF