Publications by authors named "Veronique Vaury"

Water stable isotope analysis using Cavity Ring-Down Spectroscopy (CRDS) has a strong between-sample memory effect. The classic approach to correct this memory effect is to inject the sample at least 6 times and ignore the first two to three injections. The average of the remaining injections is then used as measured value.

View Article and Find Full Text PDF

The microbial reduction of nitrate, via nitrite into gaseous di-nitrogen (denitrification) plays a major role in nitrogen removal from aquatic ecosystems. Natural abundance stable isotope measurements can reveal insights into the dynamics of production and consumption of nitrite during denitrification. In this study, batch experiments with environmental bacterial communities were used to investigate variations of concentrations and isotope compositions of both nitrite and nitrate under anoxic conditions.

View Article and Find Full Text PDF

Nitrate content of surface waters results from complex mixing of multiple sources, whose signatures can be modified through N reactions occurring within the different compartments of the whole catchment. Despite this complexity, the determination of nitrate origin is the first and crucial step for water resource preservation. Here, for the first time, we combined at the catchment scale stable isotopic tracers (δN and δO of nitrate and δB) and fecal indicators to trace nitrate sources and pathways to the stream.

View Article and Find Full Text PDF

The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident resulted in radiocesium fallout contaminating coastal catchments of the Fukushima Prefecture. As the decontamination effort progresses, the potential downstream migration of radiocesium contaminated particulate matter from forests, which cover over 65% of the most contaminated region, requires investigation. Carbon and nitrogen elemental concentrations and stable isotope ratios are thus used to model the relative contributions of forest, cultivated and subsoil sources to deposited particulate matter in three contaminated coastal catchments.

View Article and Find Full Text PDF

Rationale: Plant tissues artificially labeled with (13)C are increasingly used in environmental studies to unravel biogeochemical and ecophysiological processes. However, the variability of (13)C-content in labeled tissues has never been carefully investigated. Hence, this study aimed at documenting the variability of (13)C-content in artificially labeled leaves.

View Article and Find Full Text PDF