Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) is a small molecule with potent anticancer activity. Like other 1,4-naphthoquinones, it exhibits electrophilic reactivity towards biological nucleophiles. We demonstrate that plumbagin and structurally related 1,4-naphthoquinones with at least one unsubstituted quinoid carbon (C2 or C3) bind to albumin, an ubiquitously present nucleophile, with minimum recovery of free drug.
View Article and Find Full Text PDFBackground: Plumbagin, a medicinal plant-derived 5-hydroxy-2-methyl-1,4-naphthoquinone, is an emerging drug with a variety of pharmacological effects, including potent anticancer activity. We have previously shown that plumbagin improves the efficacy of androgen deprivation therapy (ADT) in prostate cancer and it is now being evaluated in phase I clinical trial. However, the development of formulation of plumbagin as a compound with sparing solubility in water is challenging.
View Article and Find Full Text PDFBackground: Plumbagin is a candidate drug for the treatment of prostate cancer. Previous observations indicated that it may improve the efficacy of androgen deprivation therapy (ADT). This study evaluates the effectiveness of treatment with combinations of plumbagin and alternative strategies for ADT in mouse models of prostate cancer to support its clinical use.
View Article and Find Full Text PDFIn metastasis, circulating tumor cells penetrate the walls of blood vessels and enter the metastatic target tissue, thereby becoming exposed to novel and relatively unsupportive microenvironments. In the new microenvironments, the tumor cells often remain in a dormant state indefinitely and must adapt before they are able to successfully colonize the tissue. Very little is known about this adaptive process.
View Article and Find Full Text PDFMembers of the early growth response (EGR) family of transcription factors play diverse functions in response to many cellular stimuli, including growth, stress, and inflammation. Egr3 has gone relatively unstudied, but here through use of the SPECS (Strategic Partners for the Evaluation of Predictive Signatures of Prostate Cancer) Affymetrix whole genome gene expression database we report that Egr3 mRNA is significantly over-expressed in prostate cancer compared to normal prostate tissue (5-fold). The Human Protein Atlas (http://www.
View Article and Find Full Text PDFBackground: Hormonal ablation is the standard treatment for disseminated androgen-dependent prostate cancer. Although tumor growth is controlled at first, the tumor invariably recurs in the form of castration-resistant prostate cancer. This study assessed the efficacy of a new therapeutic strategy that combines plumbagin, a naturally occurring naphthoquinone, with androgen ablation.
View Article and Find Full Text PDFIntra-Vital Microscopy (IVM) is used to visualize tumors in animals and analyze various aspects of cancer physiology such as tumor vascularization, cell migration and metastasis. The main advantages of IVM include the real -time analysis of dynamic processes with single-cell resolution. The application of IVM, however, is limited by the availability of animal models that carry visually accessible tumors.
View Article and Find Full Text PDFBackground: Hormonal ablation is the standard of treatment for advanced androgen-dependent prostate cancer. Although tumor regression is usually achieved at first, the cancer inevitably evolves toward androgen-independence, in part because of the development of mechanisms of resistance and in part because at the tissue level androgen withdrawal is not fully attained. Current research efforts are focused on new therapeutic strategies that will increase the effectiveness of androgen withdrawal and delay recurrence.
View Article and Find Full Text PDFProstate cancer is a major cause of cancer-related death in American men, for which finding new therapeutic strategies remains a challenge. Early growth response-1 (EGR1) is a transcription factor involved in cell proliferation and in the regulation of apoptosis. Although it has long been considered a tumor suppressor, a wealth of new evidence shows that EGR1 promotes the progression of prostate cancer.
View Article and Find Full Text PDF