In recent years, particular attention has been paid to the serotonin 4 receptor, which is well expressed in the brain, but also peripherally in various organs. The cerebral distribution of this receptor is well conserved across species, with high densities in the basal ganglia, where they are expressed by GABAergic neurons. The 5-HT receptor is also present in the cerebral cortex, hippocampus, and amygdala, where they are carried by glutamatergic or cholinergic neurons.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
April 2024
The interest in new 5-HT₆ agents stems from their ability to modulate cognition processing, food motivation and anxiety-like behaviors. While these findings come primarily from rodent studies, no studies on primates have been published. Furthermore, our understanding of where and how they act in the brain remains limited.
View Article and Find Full Text PDFAlterations of serotonin type 4 receptor levels are linked to mood disorders and cognitive deficits in several conditions. However, few studies have investigated 5-HT4R alterations in movement disorders. We wondered whether striatal 5-HT4R expression is altered in experimental parkinsonism.
View Article and Find Full Text PDFParkinson's disease (PD) is characterized by cell loss in the substantia nigra and the presence of alpha-synuclein (α-syn)-containing neuronal Lewy bodies. While α-syn has received major interest in the pathogenesis of PD, the function of beta- and gamma-synucleins (β-syn and γ-syn, respectively) is not really known. Yet, these proteins are members of the same family and also concentrated in neuronal terminals.
View Article and Find Full Text PDFThe synuclein family consists of α-, β-, and γ-Synuclein (α-Syn, β-Syn, and γ-Syn) expressed in the neurons and concentrated in synaptic terminals. While α-Syn is at the center of interest due to its implication in the pathogenesis of Parkinson's disease (PD) and other synucleinopathies, limited information exists on the other members. The current study aimed at investigating the biological role of γ-Syn controlling the midbrain dopamine (DA) function.
View Article and Find Full Text PDFBackgroundCare management of Parkinson's disease (PD) patients currently remains symptomatic, mainly because diagnosis relying on the expression of the cardinal motor symptoms is made too late. Earlier detection of PD therefore represents a key step for developing therapies able to delay or slow down its progression.MethodsWe investigated metabolic markers in 3 different animal models of PD, mimicking different phases of the disease assessed by behavioral and histological evaluation, and in 3 cohorts of de novo PD patients and matched controls (n = 129).
View Article and Find Full Text PDFBackground: Parkinson's disease (PD) is characterized by heterogeneous motor and nonmotor manifestations related to alterations in monoaminergic neurotransmission systems. Nevertheless, the characterization of concomitant dopaminergic and serotonergic dysfunction after different durations of Parkinson's disease, as well as their respective involvement in the expression and severity of neuropsychiatric signs, has gained little attention so far.
Methods: To fill this gap, we conducted a cross-sectional study combining clinical and dual-tracer positron emission tomography (PET) neuroimaging approaches, using radioligands of dopamine ([ C]-N-(3-iodoprop-2E-enyl)-2-beta-carbomethoxy-3-beta-(4-methylphenyl)-nortropane) ([ C]PE2I) and serotonin ([ C]-N,N-dimethyl-2-(-2-amino-4-cyanophenylthio)-benzylamine) ([ C]DASB) reuptake, after different durations of Parkinson's disease (ie, in short-disease duration drug-naive de novo (n = 27, 0-2 years-duration), suffering from apathy (n = 14) or not (n = 13); intermediate-disease duration (n = 15, 4-7 years-duration) and long-disease duration, non-demented (n = 15, 8-10 years-duration) patients).
Numerous clinical studies have shown that the serotonergic system also degenerates in patients with Parkinson's disease. The causal role of this impairment in Parkinson's symptomatology and the response to treatment remains to be refined, in particular thanks to approaches allowing the two components DA and 5-HT to be isolated if possible. We have developed a macaque monkey model of Parkinson's disease exhibiting a double lesion (dopaminergic and serotonergic) thanks to the sequential use of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and MDMA (3,4-methylenedioxy-N-methamphetamine) (or MDMA prior MPTP).
View Article and Find Full Text PDFSelective serotonin reuptake inhibitors (SSRIs) are widely used to treat psychiatric disorders with affective biases such as depression and anxiety. How SSRIs exert a beneficial action on emotions associated with life events is still unknown. Here we ask whether and how the effectiveness of the SSRI fluoxetine is underpinned by neural mechanisms in the ventral striatum.
View Article and Find Full Text PDFBesides the hallmark motor symptoms (rest tremor, hypokinesia, rigidity, and postural instability), patients with Parkinson's disease (PD) have non-motor symptoms, namely neuropsychiatric disorders. They are frequent and may influence the other symptoms of the disease. They have also a negative impact on the quality of life of patients and their caregivers.
View Article and Find Full Text PDFThe aim of this study was to investigate the causal role of an early serotonin injury on parkinsonian-like motor symptomatology. Monkeys were pretreated with 3,4-methylenedioxy-N-methamphetamine (MDMA, or "ecstasy"), known to lesion serotonergic fibers, before being administered 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We combined behavioural assessment, PET imaging, and immunohistochemistry.
View Article and Find Full Text PDFBackground: Whether structural alterations underpin apathy and depression in de novo parkinsonian patients is unknown. The objectives of this study were to investigate whether apathy and depression in de novo parkinsonian patients are related to structural alterations and how structural abnormalities relate to serotonergic or dopaminergic dysfunction.
Methods: We compared the morphological and microstructural architecture in gray matter using voxel-based morphometry and diffusion tensor imaging coupled with white matter tract-based spatial statistics in a multimodal imaging case-control study enrolling 14 apathetic and 13 nonapathetic patients with de novo Parkinson's disease and 15 age-matched healthy controls, paired with PET imaging of the presynaptic dopaminergic and serotonergic systems.
Background: Dopaminergic and serotonergic degenerations alter pharmacological neurotransmission and structural markers in Parkinson's disease (PD). Alteration of diffusion measures in key brain regions depict MPTP/MDMA lesions in the monkey model of PD. Whether dopatherapy impacts such diffusion measures remains an open question.
View Article and Find Full Text PDFJ Neural Transm (Vienna)
August 2018
The MPTP monkey model of Parkinson's disease (PD) has allowed huge advances regarding the understanding of the pathological mechanisms of PD and L-DOPA-induced adverse effects. Among the main findings were the imbalance between the efferent striatal pathways in opposite directions between the hypokinetic and hyperkinetic states of PD. In both normal and parkinsonian monkeys, the combination of behavioral and anatomical studies has allowed the deciphering of the cortico-basal ganglia circuits involved in both movement and behavioral disorders.
View Article and Find Full Text PDFThe striatum is a brain region involved in motor control and in diverse forms of implicit memory. It is also involved in the pathogenesis of many significant human disorders, including drug addiction, that are thought to involve adaptive changes in gene expression. We have previously shown that the cyclin L, ania-6, is expressed as at least two splice forms, which are differentially regulated in striatal neurons by different neurotransmitters.
View Article and Find Full Text PDF