Publications by authors named "Veronique Louis"

Polyploidization is an important process in the evolution of eukaryotic genomes, but ensuing molecular mechanisms remain to be clarified. Autopolyploidization or whole-genome duplication events frequently are resolved in resulting lineages by the loss of single genes from most duplicated pairs, causing transient gene dosage imbalance and accelerating speciation through meiotic infertility. Allopolyploidization or formation of interspecies hybrids raises the problem of genetic incompatibility (Bateson-Dobzhansky-Muller effect) and may be resolved by the accumulation of mutational changes in resulting lineages.

View Article and Find Full Text PDF

This short article presents an overview of tandem gene arrays (TGAs) in hemiascomycete yeasts. In silico and in vivo analyses are combined to address structural, functional and evolutionary aspects of these particular chromosomal structures. Genomic instability of TGAs is discussed.

View Article and Find Full Text PDF

Yeasts of the Pichia genus have been isolated from different natural environments. Phylogenies based on multigene sequence analysis have shown that the genus is polyphyletic. Some species of this genus are member of the CTG group.

View Article and Find Full Text PDF

Background: This paper describes an efficient in silico method for detecting tandem gene arrays (TGAs) in fully sequenced and compact genomes such as those of prokaryotes or unicellular eukaryotes. The originality of this method lies in the search of protein sequence similarities in the vicinity of each coding sequence, which allows the prediction of tandem duplicated gene copies independently of their functionality.

Results: Applied to nine hemiascomycete yeast genomes, this method predicts that 2% of the genes are involved in TGAs and gene relics are present in 11% of TGAs.

View Article and Find Full Text PDF

The DUP gene family of Saccharomyces cerevisiae comprises 23 members that can be divided into two subfamilies--DUP240 and DUP380. The location of the DUP loci suggests that at least three mechanisms were responsible for their genomic dispersion: nonreciprocal translocation at chromosomal ends, tandem duplication and Ty-associated duplication. The data we present here suggest that these nonessential genes encode proteins that facilitate membrane trafficking processes.

View Article and Find Full Text PDF

Duplication, resulting in gene redundancy, is well known to be a driving force of evolutionary change. Gene families are therefore useful targets for approaching genome evolution. To address the gene death process, we examined the fate of the 10-member-large S288C DUP240 family in 15 Saccharomyces cerevisiae strains.

View Article and Find Full Text PDF