Newcastle disease (ND), caused by virulent class II avian paramyxovirus 1 (Newcastle disease virus, NDV), occurs sporadically in poultry despite their having been immunized with commercial vaccines. These vaccines were all derived from NDV strains isolated around 70 years ago. Since then, class II NDV strains have evolved into 18 genotypes.
View Article and Find Full Text PDFSeveral new highly pathogenic (HP) H5 avian influenza virus (AIV) have been detected in poultry farms from south-western France since November 2015, among which an HP H5N1. The zoonotic potential and origin of these AIVs immediately became matters of concern. One virus of each subtype H5N1 (150169a), H5N2 (150233) and H5N9 (150236) was characterised.
View Article and Find Full Text PDFA serological test for detecting N9-specific antibodies may be useful as a DIVA strategy to differentiate vaccinated from infected animals or simply for direct serological detection of infection with N9-subtype virus. The method currently recommended for the detection of antibodies against neuraminidase is neuraminidase inhibition (NI), which is a laborious method using toxic chemicals and has low sensitivity. The present study describes the development and validation of an N9-specific ELISA.
View Article and Find Full Text PDFPLoS One
November 2015
Four avian metapneumovirus (AMPV) subgroups (A-D) have been reported previously based on genetic and antigenic differences. However, until now full length sequences of the only known isolates of European subgroup C and subgroup D viruses (duck and turkey origin, respectively) have been unavailable. These full length sequences were determined and compared with other full length AMPV and human metapneumoviruses (HMPV) sequences reported previously, using phylogenetics, comparisons of nucleic and amino acid sequences and study of codon usage bias.
View Article and Find Full Text PDFBackground: H5 low pathogenic avian influenza virus (LPAIV) infection in domestic ducks is a major problem in duck producing countries. Their silent circulation is an ongoing source of potential highly pathogenic or zoonotic emerging strains. To prevent such events, vaccination of domestic ducks might be attempted but remains challenging.
View Article and Find Full Text PDFEU annual serosurveillance programs show that domestic duck flocks have the highest seroprevalence of H5 antibodies, demonstrating the circulation of notifiable avian influenza virus (AIV) according to OIE, likely low pathogenic (LP). Therefore, transmission characteristics of LPAIV within these flocks can help to understand virus circulation and possible risk of propagation. This study aimed at estimating transmission parameters of four H5 LPAIV (three field strains from French poultry and decoy ducks, and one clonal reverse-genetics strain derived from one of the former), using a SIR model to analyze data from experimental infections in SPF Muscovy ducks.
View Article and Find Full Text PDFBackground: Avian influenza virus (AIV) subtypes H5 and H7 attracts particular attention because of the risk of their potential pathogenicity in poultry. The haemagglutination inhibition (HI) test is widely used as subtype specific test for serological diagnostics despite the laborious nature of this method. However, enzyme-linked immunosorbent assays (ELISAs) are being explored as an alternative test method.
View Article and Find Full Text PDFNewcastle disease, induced by a type 1 Avian Paramyxovirus (APMV-1), is one of the most serious poultry diseases. APMV-1 are divided into two classes based on genetic analysis: class II strains have been recovered from wild or domestic birds and include virulent and avirulent isolates whereas class I strains have been mainly isolated from wild birds and are avirulent. Within class I, a new proposed genotype has recently been reported.
View Article and Find Full Text PDFNewcastle disease (ND) is one of the most lethal diseases of poultry worldwide. It is caused by an avian paramyxovirus 1 that has high genomic diversity. In the framework of an international surveillance program launched in 2007, several thousand samples from domestic and wild birds in Africa were collected and analyzed.
View Article and Find Full Text PDFVaccination protocols were evaluated in one-day old Muscovy ducklings, using an experimental Newcastle disease recombinant vaccine (vNDV-H5) encoding an optimized synthetic haemagglutinin gene from a clade 2.2.1 H5N1 highly pathogenic (HP) avian influenza virus (AIV), either as a single administration or as a boost following a prime inoculation with a fowlpox vectored vaccine (vFP89) encoding a different H5 HP haemagglutinin from an Irish H5N8 strain.
View Article and Find Full Text PDFFollowing the emergence of highly pathogenic avian influenza (AI), active surveillance of infections due to the H5 and H7 subtypes in poultry has increased and been made compulsory in Europe since 2002, by means of annual serological surveys using the haemagglutination inhibition (HI) test. Domestic anseriforms, particularly ducks and geese, are more frequently infected by H5 low pathogenic AI virus, often subclinically, and represent a threat for other terrestrial poultry. 1783 sera, mainly from ducks, have been used to evaluate and compare a commercial ELISA kit detecting H5 antibodies with the currently recommended HI test.
View Article and Find Full Text PDFJ Virol Methods
October 2013
Determining the sequence of non-segmented, negative sense RNA viral genomes is far from routine and often requires the application of several techniques. In this study, an existing method used currently just for determination of the genomic 3' extremity was used to determine both the 3' and 5' sequence extremities of a Newcastle disease virus and an avian metapneumovirus. This was achieved with a single 3' nucleotide tailing reaction of both the genomic RNA and the full length, positive sense, antigenomic RNA, followed by a single reverse transcription reaction targeted to the common polynucleotide tails, and then individual PCRs specific for each extremity using PCR primers derived from the sequence of the RT primer or from neighbouring virus sequences known previously.
View Article and Find Full Text PDFWe report the first complete genome sequence of a strain that presents some pathogenicity and that belongs to a recently characterized genotype of avian paramyxovirus type 1 (APMV-1). This virus, isolated from the common teal, presents the most divergent genome within class I of APMV-1.
View Article and Find Full Text PDFWe report here the complete genome of a new avian paramyxovirus (APMV-11) isolated from common snipes. Sequence data from this virus showed that it has the largest genome of APMV and unusual P gene mRNA editing.
View Article and Find Full Text PDFSince 2006, the members of the molecular epidemiological working group of the European "EPIZONE" network of excellence have been generating sequence data on avian influenza and avian paramyxoviruses from both European and African sources in an attempt to more fully understand the circulation and impact of these viruses. This review presents a timely update on the epidemiological situation of these viruses based on sequence data generated during the lifetime of this project in addition to data produced by other groups during the same period. Based on this information and putting it all into a European context, recommendations for continued surveillance of these important viruses within Europe are presented.
View Article and Find Full Text PDFIn Madagascar, Newcastle disease (ND) has become enzootic after the first documented epizootics in 1946, with recurrent annual outbreaks causing mortality up to 40%. Four ND viruses recently isolated in Madagascar were genotypically and pathotypically characterised. By phylogenetic inference based on the F and HN genes, and also full-genome sequence analyses, the NDV Malagasy isolates form a cluster distant enough to constitute a new genotype hereby proposed as genotype XI.
View Article and Find Full Text PDFRecurrent outbreaks of H5N1 HPAIV occurred in several Central European countries in 2007. In-depth phylogenetic analyses which included full-length genomic sequences of the viruses involved were performed to elucidate possible origins of incursions and transmission pathways. Tree reconstructions as well as host-shift and ancestral area inferences were conducted in a maximum likelihood framework.
View Article and Find Full Text PDFHighly pathogenic (HP) H5N1 avian influenza (AI) is enzootic in several countries of Asia and Africa and constitutes a major threat, at the world level, for both animal and public health. Ducks play an important role in the epidemiology of AI, including HP H5N1 AI. Although vaccination can be a useful tool to control AI, duck vaccination has not proved very efficient in the field, indicating a need to develop new vaccines and a challenge model to evaluate the protection for duck species.
View Article and Find Full Text PDFHighly pathogenic (HP) avian influenza A viruses (AIVs) subtype H5N1 (subclade 2.2) were detected in wild birds during outbreaks in France during winter 2006 and summer 2007 in la Dombes wetlands (eastern France) and in Moselle wetlands (northeastern France), respectively. Blood samples from apparently healthy wild birds were collected in 2006 and 2007 from the end of the outbreak to several weeks after the influenza A outbreak inside and outside the contaminated areas, and in 2008 outside the contaminated areas.
View Article and Find Full Text PDFInfluenza A viruses have been isolated from a wide range of animal species, aquatic birds being the reservoir for their genetic diversity. Avian influenza viruses can be transmitted to humans, directly or indirectly through an intermediate host like pig. This study aimed to define in vitro conditions that could prove useful to evaluate the potential of influenza viruses to adapt to a different host.
View Article and Find Full Text PDFIn February 2006, a highly pathogenic avian influenza (HPAI) H5N1 virus was isolated from Common Pochards (Aythia ferina) in the Dombes region of France, an important migrating and wintering waterfowl area. Thereafter, HPAI H5N1 virus was isolated from 39 swab pools collected from dead waterfowl found in the Dombes, but only from three pooled samples collected outside of this area but located on the same migration flyway. A single turkey farm was infected in the Dombes.
View Article and Find Full Text PDFInfections with H5/H7 low-pathogenic avian influenza (LPAI) viruses are now notifiable because such viruses can mutate into highly pathogenic avian influenza viruses, leading to serious problems for both animal and public health. Domestic ducks can play a crucial role in the transmission of H5 LPAI viruses to other poultry. Although prime boost vaccination using, respectively, a recombinant vaccine and an inactivated vaccine was shown to be protective in ducks against H5N1 highly pathogenic avian influenza, vaccination of domestic ducks against H5 LPAIV is poorly documented.
View Article and Find Full Text PDFHighly pathogenic avian influenza (HPAI) viruses of subtype H5N1 have spread since late 2003 in East and Southeast Asia. In April 2005, a large-scale outbreak of H5N1 infection that occurred in migratory waterfowl in Qinghai Lake nature reserve in western China, killing more than 6000 wild birds, appeared to be the beginning of a epizootic that caused outbreaks in domestic and wild birds in nearly 60 countries from Central Asia, the Middle East, Europe and Africa. The first case of Asian lineage HPAI H5N1 virus in France was described in dead wild ducks (Common pochard) in the east of France in mid-February 2006.
View Article and Find Full Text PDFAvian Dis
March 2007
In Asia, domestic ducks have been shown to play a pivotal role in H5 high-pathogenicity avian influenza virus transmission. We have also observed that the same situation may exist for H5 low-pathogenicity avian influenza (LPAI) virus. No data are available regarding the protection afforded by commercial inactivated vaccines against H5 LPAI virus infection in ducks, and two preliminary experiments using commercial inactivated vaccines gave poor results.
View Article and Find Full Text PDF