Publications by authors named "Veronique Guyonnet-Duperat"

Thanks to its very high genome-editing efficiency, CRISPR-Cas9 technology could be a promising anticancer weapon. Clinical trials using CRISPR-Cas9 nuclease to edit and alter immune cells are ongoing. However, to date, this strategy still has not been applied in clinical practice to directly target cancer cells.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the infectious agent that has caused the current coronavirus disease (COVID) pandemic. Viral infection relies on the viral S (spike) protein/cellular receptor ACE2 interaction. Disrupting this interaction would lead to early blockage of viral replication.

View Article and Find Full Text PDF

Germline mutations that activate genes in the canonical RAS/MAPK signaling pathway are responsible for rare human developmental disorders known as RASopathies. Here, we analyzed the molecular determinants of Costello syndrome (CS) using a mouse model expressing HRAS p.G12S, patient skin fibroblasts, hiPSC-derived human cardiomyocytes, a HRAS p.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent responsible for the recent coronavirus disease 2019 (COVID-19) pandemic. Productive SARS-CoV-2 infection relies on viral entry into cells expressing angiotensin-converting enzyme 2 (ACE2). Indeed, viral entry into cells is mostly mediated by the early interaction between the viral spike protein S and its ACE2 receptor.

View Article and Find Full Text PDF
Article Synopsis
  • * The OX+ tumors showed less uptake of [18F]fluorodeoxy-glucose and higher levels of the fatty acid oxidation enzyme MTP, which influences tumor growth dynamics.
  • * Targeting MTP with the drug trimetazidine reduced tumor growth and disrupted energy balance in OX+ tumors, offering insights into potential new treatment strategies for lung cancer.
View Article and Find Full Text PDF

Background: Diffuse midline glioma (DMG) is a pediatric malignancy with poor prognosis. Most children die less than one year after diagnosis. Recently, mutations in histone H3 have been identified and are believed to be oncogenic drivers.

View Article and Find Full Text PDF

Human skin melanin pigmentation is regulated by systemic and local factors. According to the type of melanin produced by melanocytes, the transfer and degradation of melanosomes differ, thus accounting for most variations between ethnicities. We made the surprising observation that in a drastically changed environment, white and black phenotypes are reversible since Caucasian skin grafted onto nude mice can become black with all black phenotypic characteristics.

View Article and Find Full Text PDF

Chemotherapies alter cellular redox balance and reactive oxygen species (ROS) content. Recent studies have reported that chemoresistant cells have an increased oxidative state in hematologic malignancies. In this study, we demonstrated that chemoresistant acute myeloid leukemia (AML) cells had a lower level of mitochondrial and cytosolic ROS in response to cytarabine (AraC) and overexpressed myeloperoxidase (MPO), a heme protein that converts hydrogen peroxide to hypochlorous acid (HOCl), compared with sensitive AML cells.

View Article and Find Full Text PDF
Article Synopsis
  • CRISPR-Cas9 technology shows promise for genome editing, but using it at the UROS locus for congenital erythropoietic porphyria has revealed some serious issues with unwanted mutations and protein dysfunction.
  • The study found that while the desired repairs through homology-directed repair are rare, the more common non-homologous end joining (NHEJ) pathway leads to unwanted side effects, including chromosomal truncations.
  • As a safer alternative, using a single nickase method instead of the standard nuclease approach may reduce these risks, making it a better choice for disease modeling and future gene therapy applications.
View Article and Find Full Text PDF

Iatrogenic tumorigenesis is a major limitation for the use of human induced pluripotent stem cells (hiPSCs) in hematology. The teratoma risk comes from the persistence of hiPSCs in differentiated cell populations. Our goal was to evaluate the best system to purge residual hiPSCs before graft without compromising hematopoietic repopulation capability.

View Article and Find Full Text PDF

Monoallelic 6p25.3 rearrangements associated with DUSP22 (Dual Specificity Phosphatase 22) gene silencing have been reported in CD30+ peripheral T-cell lymphomas (PTCL), mostly with anaplastic morphology and of cutaneous origin. However, the mechanism of second allele silencing and the putative tumor suppressor function of DUSP22 have not been investigated so far.

View Article and Find Full Text PDF

In 90% of people with erythropoietic protoporphyria (EPP), the disease results from the inheritance of a common hypomorphic FECH allele, encoding ferrochelatase, in trans to a private deleterious FECH mutation. The activity of the resulting FECH enzyme falls below the critical threshold of 35%, leading to the accumulation of free protoporphyrin IX (PPIX) in bone marrow erythroblasts and in red cells. The mechanism of low expression involves a biallelic polymorphism (c.

View Article and Find Full Text PDF

Background: Due to frequent mutations in certain cancers, FGFR3 gene is considered as an oncogene. However, in some normal tissues, FGFR3 can limit cell growth and promote cell differentiation. Thus, FGFR3 action appears paradoxical.

View Article and Find Full Text PDF

Congenital erythropoietic porphyria (CEP) is due to a deficiency in the enzymatic activity of uroporphyrinogen III synthase (UROS); such a deficiency leads to porphyrin accumulation and results in skin lesions and hemolytic anemia. CEP is a candidate for retrolentivirus-mediated gene therapy, but recent reports of insertional leukemogenesis underscore the need for safer methods. The discovery of induced pluripotent stem cells (iPSCs) has opened up new horizons in gene therapy because it might overcome the difficulty of obtaining sufficient amounts of autologous hematopoietic stem cells for transplantation and the risk of genotoxicity.

View Article and Find Full Text PDF

We have hypothesised that melanocytes disappear in vitiligo because they are weakly attached to the epidermal basal membrane (melanocytorrhagy). In the epidermis, attachment of melanocytes to collagen IV is mediated through DDR1, which is under the control of CCN3. DDR1 genetic variants have been associated with vitiligo in patients of different ethnic origin.

View Article and Find Full Text PDF

DNA-damaging agents can induce premature senescence in cancer cells, which contributes to the static effects of cancer. However, senescent cancer cells may re-enter the cell cycle and lead to tumor relapse. Understanding the mechanisms that control the viability of senescent cells may be helpful in eliminating these cells before they can regrow.

View Article and Find Full Text PDF

Background: Congenital erythropoietic porphyria (CEP) is a severe autosomal recessive disorder characterized by a deficiency in uroporphyrinogen III synthase (UROS), the fourth enzyme of the heme biosynthetic pathway. We recently demonstrated the definitive cure of a murine model of CEP by lentiviral vector-mediated hematopoietic stem cell (HSC) gene therapy. In the perspective of a gene therapy clinical trial, human cellular models are required to evaluate the therapeutic potential of lentiviral vectors in UROS-deficient cells.

View Article and Find Full Text PDF

In the past 10 years, transcriptome and proteome analyses have provided valuable data on global gene expression and cell functional networks. However, when integrated,these analyses revealed partial correlations between mRNA expression levels and protein abundance thus suggesting that post-transcriptional regulations may be in part responsible for this discrepancy. In the present work, we report the development of a functional, integrated, and quantitative method to measure post-transcriptional regulations that we named FunREG.

View Article and Find Full Text PDF

Achieving long-term expression of a therapeutic gene in a given hematopoietic lineage remains an important goal of gene therapy. Congenital erythropoietic porphyria (CEP) is a severe autosomal-recessive disorder characterized by a deficiency in uroporphyrinogen III synthase (UROS), the fourth enzyme of the heme biosynthetic pathway. We used a recently obtained murine model to check the feasibility of gene therapy in this disease.

View Article and Find Full Text PDF

We have previously described how a 16 nucleotides ODN (termed 93del) is capable of inhibiting the activity of recombinant integrase in a cell-free system as well as HIV-1 replication in human-infected cells with IC(50) in the low nanomolar range. Intracellular HIV-1 replication was inhibited when the ODN was added at the onset of infection. These results raise several questions.

View Article and Find Full Text PDF

We previously reported that corticosteroid-binding globulin gene (Cbg) may be the causal gene of a quantitative trait locus associated with cortisol levels, fat deposition, and muscle content in a pig intercross. Sequence analysis of parental animals allowed us to identify four amino-acid substitutions. Here we have examined if any of these single amino acid substitutions could be responsible for the difference in CBG binding and affinity for cortisol between the parental breeds, using in vitro assays of Cbg variants after transfection of mammalian cells.

View Article and Find Full Text PDF

In the present study we searched for quantitative trait loci (QTLs) that affect neuroendocrine stress responses in a 20-min restraint stress paradigm using Brown-Norway (BN) and Wistar-Kyoto-Hyperactive (WKHA) rats. These strains differed in their hypothalamic-pituitary-adrenal axis (plasma ACTH and corticosterone levels, thymus, and adrenal weights) and in their renin-angiotensin-aldosterone system reactivity (plasma renin activity, aldosterone concentration). We performed a whole-genome scan on a F2 progeny derived from a WKHA x BN intercross, which led to the identification of several QTLs linked to plasma renin activity (Sr6, Sr8, Sr11, and Sr12 on chromosomes RNO2, 3, 19, and 8, respectively), plasma aldosterone concentration (Sr7 and Sr9 on RNO2 and 5, respectively), and thymus weight (Sr10, Sr13, and Srl4 on RNO5, 10, and 16, respectively).

View Article and Find Full Text PDF

We present data suggesting that corticosteroid-binding globulin (CBG) may be the causal gene of a previously identified quantitative trait locus (QTL) associated with cortisol levels, fat, and muscle content in a pig intercross. Because Cbg in human and mouse maps in the region orthologous to the pig region containing this QTL, we considered Cbg as an interesting positional candidate gene because CBG plays a major role in cortisol bioavailability. Firstly, we cloned pig Cbg from a bacterial artificial chromosome library and showed by fluorescent in situ hybridization and radiation hybrid mapping that it maps on 7q26 at the peak of the QTL interval.

View Article and Find Full Text PDF

Female Fischer 344 (F344) rats have been shown to display increased serotonin transporter (5-HTT) gene expression in the dorsal raphe, compared to female Lewis (LEW) rats. Herein, we explored, by means of synaptosomal preparations and in vivo microdialysis, whether central, but also peripheral, 5-HTT protein expression/function differ between strains. Midbrain and hippocampal [3H]paroxetine binding at the 5-HTT and hippocampal [3H]serotonin (5-HT) reuptake were increased in male and female F344 rats, compared to their LEW counterparts, these strain differences being observed both in rats of commercial origin and in homebred rats.

View Article and Find Full Text PDF