Bioengineering (Basel)
March 2024
Many new reconstruction techniques have been deployed to allow low-dose CT examinations. Such reconstruction techniques exhibit nonlinear properties, which strengthen the need for a task-based measure of image quality. The Hotelling observer (HO) is the optimal linear observer and provides a lower bound of the Bayesian ideal observer detection performance.
View Article and Find Full Text PDFObjectives: To provide radiologists and physicists with methodological tools to improve patient management after vascular fluoroscopically guided intervention (FGI) by providing optimized thresholds (OT) values that could be used as a surrogate to the thresholds classically proposed by the National Council on Radiation Protection (NCRP) or could be useful to adapt their own substantial radiation dose levels (SRDL) values.
Methods: PSD of 2000-4000 mGy after FGI were calculated for 258 patients with dedicated software. Overall, the kerma and KAP 3D-ROC curves were used to assess the sensitivity (SEN) and specificity (SPE) of NCRP thresholds and OT for each PSD.
Background: The current paradigm for evaluating computed tomography (CT) system performance relies on a task-based approach. As the Hotelling observer (HO) provides an upper bound of observer performances in specific signal detection tasks, the literature advocates HO use for optimization purposes. However, computing the HO requires calculating the inverse of the image covariance matrix, which is often intractable in medical applications.
View Article and Find Full Text PDFBackground: The objective of our study was to report predictive factors of local control (LC) and radionecrosis (RN) of brain metastases (BM) of non-small cell lung carcinoma (NSCLC) treated by multifractionated stereotactic radiotherapy (MF-SRT) according to French recommendations.
Method: From 2012 to 2020, 87 patients with 101 BM were retrospectively included. The median age was 63 years (37-85).
Purpose: The increasing application of iterative reconstruction algorithms in clinical computed tomography to improve image quality and reduce radiation dose, elicits strong interest, and needs model observers to optimize CT scanning protocols objectively and efficiently. The current paradigm for evaluating imaging system performance relies on Fourier methods, which presuppose a linear, wide-sense stationary system. Long-range correlations introduced by iterative reconstruction algorithms may narrow the applicability of Fourier techniques.
View Article and Find Full Text PDFBackground: Stereotactic radiotherapy (SRT) should be applied with a biologically effective dose with an α/β of 12 (BED) ≥ 40 Gy to reach a 1-year local control (LC) ≥ 70%. The aims of this retrospective study were to report a series of 81 unresected large brain metastases treated with Linac-based multifraction SRT according to the ICRU 91 and to identify predictive factors associated with LC.
Methods: Included in this study were the first 81 brain metastases (BM) consecutively treated with Linac-based volumetric modulated arc therapy (VMAT) multifraction SRT from 2017 to 2019.
Background: Stereotactic radiosurgery (SRS) is a common treatment option for vestibular schwannomas. Historically, a dose de-escalation of the marginal prescribed dose from 16 Gy to 12-13 Gy has been done to limit toxicity without reducing local control (LC). We aimed to retrospectively report outcomes of Linac-based SRS for vestibular schwannomas treated with different doses.
View Article and Find Full Text PDFObjectives: The National Council on Radiation Protection (NCRP) report no. 168 recommended that during fluoroscopically guided interventions (FGIs), each patient should be monitored when one of the following thresholds is reached: an air kerma > 5 Gy, a kerma area product (KAP) > 500 Gy.cm, a fluoroscopy time > 60 min, or a peak skin dose (PSD) > 3 Gy.
View Article and Find Full Text PDFCurrently, there is no gold standard treatment for Extraskeletal Myxoid Chondrosarcomas (EMC) making wide margin surgical resection the most effective alternative treatment. Nevertheless, in previous preclinical studies our lab demonstrated the potential of the hypoxia-activated prodrug (HAP) ICF05016 on EMC murine model inoculated with the H-EMC-SS human cell line. The aim of this study was to assess, in vivo, the relevance of the combination of this HAP with External Beam Radiotherapy (EBR).
View Article and Find Full Text PDFBackground: After stereotactic body radiation therapy (SBRT) for medically inoperable stage I non-small-cell lung cancer (NSCLC), more patients die of comorbidities, particularly severe pulmonary insufficiency, than of tumor progression. The aim of this study was to evaluate correlation between lung biologically effective dose (BED) with an α/β ratio of 3 Gy (BED) and overall survival (OS) for these patients.
Methods: From 2012 to 2017, we have developed a prospectively updated institutional database for all first 100 consecutively treated patients with inoperable Stage 1 (T1T2N0M0) NSCLC.
Background: Numerous studies have assessed the predictive factors for the arteriovenous malformation (AVM) response to stereotactic radiosurgery (SRS). However, only a few have discussed the causes of failure. The aim of the present study was to evaluate the patterns of failure in patients with AVM who had undergone linear accelerator SRS.
View Article and Find Full Text PDFIn the present study, we have evaluated the efficacy and toxicity of repeated brain metastases (BM) stereotactic radiosurgery (SRS2) following local failure of a prior radiosurgical procedure (SRS1). Between December 1996 and August 2015, 30 patients with 36 BM underwent SRS2 with a median dose of 18Gy. All BM were located outside critical structures.
View Article and Find Full Text PDFTelomeres are nucleoprotein structures at the end of chromosomes which stabilize and protect them from nucleotidic degradation and end-to-end fusions. The G-rich telomeric single-stranded DNA overhang can adopt a four-stranded G-quadruplex DNA structure (G4). Stabilization of the G4 structure by binding of small molecule ligands enhances radiosensitivity of tumor cells, and this combined treatment represents a novel anticancer approach.
View Article and Find Full Text PDFRadiotherapy is an essential component of glioma standard treatment. Glioblastomas (GBM), however, display an important radioresistance leading to tumor recurrence. To improve patient prognosis, there is a need to radiosensitize GBM cells and to circumvent the mechanisms of resistance caused by interactions between tumor cells and their microenvironment.
View Article and Find Full Text PDFBackground: The place of radiosurgery (RS) as an option in the treatment of recurrent malignant glioma is still debated on in the absence of prospective randomized trials.
Objective: To assess the clinical outcome and MRI response after radiosurgery of recurrent malignant glioma.
Methods: We evaluated 50 consecutive patients treated in a single institution.
Purpose: To improve the outcome prediction of uterine cervical carcinoma by measuring the vascular permeability (k(ep)) and the extracellular volume fraction (v(e)) of the tumor from Dynamic T(1)- IRM Relaxometry.
Materials And Methods: Twenty-six patients with proven cervical carcinoma were divided into good outcome and poor outcome groups. Classic tumor prognostic factors, the longest diameter L and the volume V of the tumor, were measured from morphologic MR images.
Vascular permeability (k(ep), min(-1)) and extracellular volume fraction (v(e)) are tissue parameters of great interest to characterize malignant tumor lesions. Indeed, it is well known that tumors with high blood supply better respond to therapy than poorly vascularized tumors, and tumors with large extracellular volume tend to be more malignant than tumors showing lower extracellular volume. Furthermore, the transport of therapeutic agents depends on both extracellular volume fraction and vessel permeability.
View Article and Find Full Text PDFDynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) using extracellular contrast agents has proved to be useful for the characterization of breast tumors. DCE-MRI has demonstrated a high sensitivity (around 95%) but a rather poor and controversial specificity, varying, according to the different studies, from 45% to 90%. In order to increase (a) the specificity and (b) the robustness of this quantitative approach in multicenter evaluation (five MRI units), a quantitative approach called dynamic relaxometry has been developed.
View Article and Find Full Text PDF