Understanding the causes of population subdivision is of fundamental importance, as studying barriers to gene flow between populations may reveal key aspects of the process of adaptive divergence and, for pathogens, may help forecasting disease emergence and implementing sound management strategies. Here, we investigated population subdivision in the multihost fungus Botrytis cinerea based on comprehensive multiyear sampling on different hosts in three French regions. Analyses revealed a weak association between population structure and geography, but a clear differentiation according to the host plant of origin.
View Article and Find Full Text PDFAlthough Botrytis cinerea is known for its ability to produce high amounts of spores on diseased plants, enabling it to complete rapidly numerous developmental cycles in favorable environments, population genetics studies of this fungus indicate enormous diversity and limited clonal spread. Here, we report an exception to this situation in the settings of commercial tomato greenhouses. The genotypic characterization of 712 isolates collected from the air and from diseased plants, following the development of gray mold epidemics in four greenhouses in southern France, revealed the presence of a few predominant genotypes in a background of highly diverse populations.
View Article and Find Full Text PDFThe stability of microsatellite markers was investigated in the spore-producing fungus Botrytis cinerea exposed to four growth conditions. This knowledge is essential in order to differentiate mutations from genetic exchanges or recombination in population genetics studies. It is also important when using strains from collections that need to be regularly propagated on medium.
View Article and Find Full Text PDF