Novel therapies are needed for effective treatment of acute myeloid leukemia (AML). Relapse is common and salvage treatment with cytotoxic chemotherapy is rarely curative. CD123 and CD33, 2 clinically validated targets in AML, are jointly expressed on blasts and leukemic stem cells in >95% of patients with AML.
View Article and Find Full Text PDFLocal pulmonary delivery of biotherapeutics may offer advantages for the treatment of lung diseases. Delivery of the therapeutic entity directly to the lung has the potential for a rapid onset of action, reduced systemic exposure and the need for a lower dose, as well as needleless administration. However, formulation of a protein for inhaled delivery is challenging and requires proteins with favorable biophysical properties suitable to withstand the forces associated with formulation, delivery, and inhalation devices.
View Article and Find Full Text PDFBackground: Over the last few decades the methylotrophic yeast Pichia pastoris has become a popular host for a wide range of products such as vaccines and therapeutic proteins. Several P. pastoris engineered strains and mutants have been developed to improve the performance of the expression system.
View Article and Find Full Text PDFProtein sequences from multiple hepatitis B virus (HBV) isolates were analyzed for the presence of amino acid motifs characteristic of cytotoxic T-lymphocyte (CTL) and helper T-lymphocyte (HTL) epitopes with the goal of identifying conserved epitopes suitable for use in a therapeutic vaccine. Specifically, sequences bearing HLA-A1, -A2, -A3, -A24, -B7, and -DR supertype binding motifs were identified, synthesized as peptides, and tested for binding to soluble HLA. The immunogenicity of peptides that bound with moderate to high affinity subsequently was assessed using HLA transgenic mice (CTL) and HLA cross-reacting H-2(bxd) (BALB/c x C57BL/6J) mice (HTL).
View Article and Find Full Text PDF