This study aims to adapt an experimental model based on Franz diffusion cells and porcine skin explants to characterize the diffusion of TiO NPs and to compare the efficacy of different cleansing products, soapy water and a calixarene cleansing nanoemulsion compared with pure water, as a function of the time of treatment. While TiO NPs tend to form agglomerates in aqueous solutions, a diffusion through healthy skin was confirmed as particles were detected in the receptor fluid of Franz cells using sp-ICP-MS. In the absence of treatment, SIMS images showed the accumulation of TiO agglomerates in the stratum corneum, the epidermis, the dermis, and around hair follicles.
View Article and Find Full Text PDFIn the field of biomonitoring, exhaled breath condensate (EBC) is described as a potentially useful matrix for assessing inhalation exposure biomarkers in a non-invasive way. However, it is still unclear to what extent EBC is representative of the deep lung. To address this knowledge gap, EBC, bronchial washes (BWs), and bronchoalveolar lavages (BALs) were collected from 82 patients suffering from interstitial lung diseases (ILDs).
View Article and Find Full Text PDFBackground: In the field of nanoparticle exposure biomonitoring, oxidative stress biomarkers measured in exhaled breath condensate appear promising to detect early respiratory effects in workers handling nanomaterials. However, condensation is known for its poor efficiency in collecting non-volatiles in exhaled breath, leading to the low sensitivity of such measurements. Moreover, to be easily used in field studies on large groups of workers, the collection device must be disposable and convenient.
View Article and Find Full Text PDFTo improve biomedical knowledge and to support biomarker discovery studies, it is essential to establish comprehensive proteome maps for human tissues and biofluids, and to make them publicly accessible. In this study, we performed an in-depth proteomics characterization of exhaled breath condensate (EBC), a sample obtained non-invasively by condensation of exhaled air that contains submicron droplets of airway lining fluid. Two pooled samples of EBC, each obtained from 10 healthy donors, were processed using a straightforward protocol based on sample lyophilization, in-gel digestion and liquid chromatography tandem-mass spectrometry analysis.
View Article and Find Full Text PDFAircraft engine exhaust increases the number concentration of nanoparticles (NP) in the surrounding environment. Health concerns related to NP raise the question of the exposure and health monitoring of airport workers. No biological monitoring study on this profession has been reported to date.
View Article and Find Full Text PDF