Publications by authors named "Veronique Bodart"

The redesign of the previously reported thiophene-3-yl-methyl urea series, as a result of potential cardiotoxicity, was successfully accomplished, resulting in the identification of a novel potent series of CCR5 antagonists containing the imidazolidinylpiperidinyl scaffold. The main redesign criteria were to reduce the number of rotatable bonds and to maintain an acceptable lipophilicity to mitigate hERG inhibition. The structure-activity relationship (SAR) that was developed was used to identify compounds with the best pharmacological profile to inhibit HIV-1.

View Article and Find Full Text PDF

A series of CCR5 antagonists representing the thiophene-3-yl-methyl ureas were designed that met the pharmacological criteria for HIV-1 inhibition and mitigated a human ether-a-go-go related gene (hERG) inhibition liability. Reducing lipophilicity was the main design criteria used to identify compounds that did not inhibit the hERG channel, but subtle structural modifications were also important. Interestingly, within this series, compounds with low hERG inhibition prolonged the action potential duration (APD) in dog Purkinje fibers, suggesting a mixed effect on cardiac ion channels.

View Article and Find Full Text PDF

A series of CCR5 antagonists were optimized for potent inhibition of R5 HIV-1 replication in peripheral blood mononuclear cells. Compounds that met acceptable ADME criteria, selectivity, human plasma protein binding, potency shift in the presence of α-glycoprotein were evaluated in rat and dog pharmacokinetics.

View Article and Find Full Text PDF

CXCR4 is widely expressed in multiple cell types, and is involved in neonatal development, hematopoiesis, and lymphocyte trafficking and homing. Disruption of the CXCL12/CXCR4 interaction has been implicated in stem cell mobilization. Additionally CXCR4 is a co-receptor for HIV.

View Article and Find Full Text PDF
Article Synopsis
  • CXCR4 is a key receptor involved in various biological processes and acts as a coreceptor for HIV, making it a potential target for new antiretroviral drugs.
  • This study investigates the binding interactions of three different small-molecule inhibitors with CXCR4, particularly focusing on a specific nonmacrocyclic inhibitor, AMD11070.
  • The findings reveal how specific mutations in the receptor affect inhibitor binding, suggesting that there is a larger binding pocket than previously thought, which could guide the design of more effective and safer CXCR4 inhibitors in the future.
View Article and Find Full Text PDF