Publications by authors named "Veronique Apaire-Marchais"

Widespread pesticide use for decades has caused environmental damage, biodiversity loss, serious human and animal health problems, and resistance to insecticides. Innovative strategies are needed to reduce treatment doses in pest management and to overcome insecticide resistance. In the present study, combinations of indoxacarb, an oxadiazine insecticide, with sublethal concentrations of deltamethrin encapsulated in lipid nanocapsules, have been tested on the crop pest .

View Article and Find Full Text PDF

Among novel strategies proposed in pest management, synergistic agents are used to improve insecticide efficacy through an elevation of intracellular calcium concentration that activates the calcium-dependent intracellular pathway. This leads to a changed target site conformation and to increased sensitivity to insecticides while reducing their concentrations. Because virus-like particles (VLPs) increase the intracellular calcium concentration, they can be used as a synergistic agent to synergize the effect of insecticides.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) have a great potential to face the global expansion of antimicrobial resistance (AMR) associated to the development of multidrug-resistant (MDR) pathogens. AMPs are usually composed of 10-50 amino acids with a broad structural diversity and present a range of antimicrobial activities. Unfortunately, even if the oral route is the most convenient one, currently approved therapeutic AMPs are mostly administrated by the intravenous route.

View Article and Find Full Text PDF

Since the emergence of the new Sars-CoV-2 coronavirus in China at the end of December 2019 and its spread around the world, the scientific community has been mobilized to study its phylogeny, virological aspects, and to understand viral and immune kinetics. In order to propose the best diagnosis, the use of direct diagnosis, by reverse transcriptase-polymerase chain reaction, or indirect diagnosis, by serology, needs to be clarified.

View Article and Find Full Text PDF

The insect repellent IR3535 is one of the important alternative in the fight against mosquito-borne disease such as malaria, dengue, chikungunya, yellow fever and Zika. Using a multidisciplinary approach, we propose the development of an innovative insecticide-based vector control strategy using an unexplored property of IR3535. We have demonstrated that in insect neurosecretory cells, very low concentration of IR3535 induces intracellular calcium rise through cellular mechanisms involving orthosteric/allosteric sites of the M1-muscarinic receptor subtype, G protein βγ subunits, background potassium channel inhibition generating depolarization, which induces voltage-gated calcium channel activation.

View Article and Find Full Text PDF

The use of neurotoxic chemical insecticides has led to consequences against the environment, insect resistances and side-effects on non-target organisms. In this context, we developed a novel strategy to optimize insecticide efficacy while reducing doses. It is based on nanoencapsulation of a pyrethroid insecticide, deltamethrin, used as synergistic agent, combined with a non-encapsulated oxadiazine (indoxacarb).

View Article and Find Full Text PDF

Integrated Pest Management and Integrated Vector Management worldwide are developed in agriculture and public health to counteract and limit the exponential increasing development of insect resistance to insecticides. However, facing the predominance of some resistant populations, new strategies are urgently needed to target resistant insects. An innovative approach lies in the optimization of commonly used insecticides when combined with chemical or biological synergistic agents.

View Article and Find Full Text PDF

N,N-diethyl-m-toluamide (DEET) induces favorable repellency against insects by acting on the sensory nervous system. According to emerging literature reports, DEET side effects in humans involve new molecular targets including the cholinergic system, acetylcholinesterase (AChE), muscarinic M1 and M3 receptor and the participation of the second messenger nitric oxide (NO). Most of these molecular events targeted by DEET have previously been characterized in insects while they have been considered as marginal compared to classical repellent properties.

View Article and Find Full Text PDF

Microorganisms (viruses, bacteria and fungi) or their bioactive agents can be used as active substances and therefore are referred as Microbial Pest Control Agents (MPCA). They are used as alternative strategies to chemical insecticides to counteract the development of resistances and to reduce adverse effects on both environment and human health. These natural entomopathogenic agents, which have specific modes of action, are generally considered safer as compared to conventional chemical insecticides.

View Article and Find Full Text PDF

The insect repellent N,N-diethyl-m-toluamide (DEET) has been reported to inhibit AChE (acetylcholinesterase) and to possess potential carcinogenic properties with excessive vascularization. In the present paper, we demonstrate that DEET specifically stimulates endothelial cells that promote angiogenesis which increases tumor growth. DEET activates cellular processes that lead to angiogenesis including proliferation, migration and adhesion.

View Article and Find Full Text PDF

The effective control of insect pests is based on the rational use of the most efficient and safe insecticide treatments. To increase the effects of classical insecticides and to avoid the ability of certain pest insects to develop resistance, it is essential to propose novel strategies. Previous studies have shown that calcium-dependent phosphorylation/dephosphorylation is now considered as a new cellular mechanism for increasing the target sensitivity to insecticides.

View Article and Find Full Text PDF

Insect vector-borne diseases remain one of the principal causes of human mortality. In addition to conventional measures of insect control, repellents continue to be the mainstay for personal protection. Because of the increasing pyrethroid-resistant mosquito populations, alternative strategies to reconstitute pyrethroid repellency and knock-down effects have been proposed by mixing the repellent DEET (N,N-Diethyl-3-methylbenzamide) with non-pyrethroid insecticide to better control resistant insect vector-borne diseases.

View Article and Find Full Text PDF

Due to an intensive use of chemical insecticides, resistance mechanisms to insecticides together with adverse effects on non-target organisms have been largely reported. Improvement in pest control strategy represents an urgent need to optimize efficiency in the control of pest insects. In this context, a novel method based on the use of insect specific virus applied in combination with chemical insecticide, which could lead to sensitization of the insect target to insecticides is described.

View Article and Find Full Text PDF

To understand better the mode of action of insecticides and repellents used in vector-borne diseases control, we developed a new biological model based on mosquito neurons isolated from adults Anopheles gambiae heads. This cellular model is well adapted to multidisciplinary approaches: electrophysiology, pharmacology, molecular biology and biochemical assays. Using RT-PCR, we demonstrated that isolated neurons express the nicotinic acetylcholine receptor subunit α1 (Agα1 nAchR), two acetylcholinesterases (AChE-1 and AChE-2) and three voltage-gated ion channels required for membrane excitability (AgCav1, AgNav1 and AgKv1).

View Article and Find Full Text PDF

Candida albicans is the most important cause of systemic fungal infection in immunocompromised humans. Candidiasis is often initiated by the adherence and the colonization of inert surfaces such as peripheral venous catheters, central catheters, prosthetic cardiac valves, and other prostheses. We have studied the early stage of adherence and have shown that the disruption of C.

View Article and Find Full Text PDF

The effective management of emerging insect-borne disease is dependent on the use of safe and efficacious chemical insecticides. Given the inherent ability of insects to develop resistance, it is essential to propose innovative strategies because insecticides remain the most important element of integrated approaches to vector control. Recently, intracellular phosphorylation and dephosphorylation of membrane receptors and ion channels targeted by insecticides have been described as new processes for increasing the sensitivity of insecticides.

View Article and Find Full Text PDF

Background: Candida species have become the fourth most-frequent cause of nosocomial bloodstream infections in immunocompromised patients. Therefore, rapid identification of pathogenic fungi to species level has been considered critical for treatment. Conventional diagnostic procedures such as blood culture or biochemical tests are lacking both sensitivity and species specificity, so development of rapid diagnostic is essential.

View Article and Find Full Text PDF

During the past two decades, the prevalence of candidiasis has increased markedly and Candida albicans has now become one of the most important causes of nosocomial infections, especially after colonization of inert surfaces such as catheters or prostheses. In a previous report, we demonstrated the overexpression of 35 unidentified genes in response to adherence of C. albicans germ tubes to plastic.

View Article and Find Full Text PDF