World J Microbiol Biotechnol
September 2014
Plant growth promoting bacteria and nitrogen-fixing bacteria (NFB) used for crop inoculation have important biotechnological potential as a sustainable fertilization tool. However, the main limitation of this technology is the low inoculum survival rate under field conditions. Microencapsulation of bacterial cells in polymer matrices provides a controlled release and greater protection against environmental conditions.
View Article and Find Full Text PDFThe companion cells (CCs) and/or phloem parenchyma cells (PCs) in foliar minor veins of some species exhibit invaginations that are amplified when plants develop in high light (HL) compared to low light (LL). Leaves of plants that develop under HL also exhibit greater maximal rates of photosynthesis compared to those that develop under LL, suggesting that the increased membrane area of CCs and PCs of HL-acclimated leaves may provide for greater levels of transport proteins facilitating enhanced sugar export. Furthermore, the degree of wall invagination in PCs (Arabidopsis thaliana) or CCs (pea) of fully expanded LL-acclimated leaves increased to the same level as that present in HL-acclimated leaves 7 days following transfer to HL, and maximal photosynthesis rates of transferred leaves of both species likewise increased to the same level as in HL-acclimated leaves.
View Article and Find Full Text PDFThis review summarizes evidence for a mechanistic link between plant photoprotection and the synthesis of oxylipin hormones as regulators of development and defense. Knockout mutants of Arabidopsis, deficient in various key components of the chloroplast photoprotection system, consistently produced greater concentrations of the hormone jasmonic acid or its precursor 12- oxo-phytodienoic acid (OPDA), both members of the oxylipin messenger family. Characterized plants include several mutants deficient in PsbS (an intrinsic chlorophyll-binding protein of photosystem II) or pigments (zeaxanthin and/or lutein) required for photoprotective thermal dissipation of excess excitation energy in the chloroplast and a mutant deficient in reactive oxygen detoxification via the antioxidant vitamin E (tocopherol).
View Article and Find Full Text PDFThe pathway of carbon phloem loading was examined in leaf tissues of the forage grass Lolium perenne. The effect of defoliation (leaf blade removal) on sucrose transport capacity was assessed in leaf sheaths as the major carbon source for regrowth. The pathway of carbon transport was assessed via a combination of electron microscopy, plasmolysis experiments and plasma membrane vesicles (PMVs) purified by aqueous two-phase partitioning from the microsomal fraction.
View Article and Find Full Text PDFMany plants translocate sugar alcohols in the phloem. However, the mechanism(s) of sugar alcohol loading in the minor veins of leaves are debated. We characterized the loading strategies of two species that transport sorbitol (Plantago major and apple [Malus domestica]), and one that transports mannitol (Asarina scandens).
View Article and Find Full Text PDFPhloem cells adjacent to sieve elements can possess wall invaginations. The role of light and jasmonic acid signaling in wall ingrowth development was examined in pea companion cells (CCs), Arabidopsis thaliana phloem parenchyma cells (PCs), and in Senecio vulgaris (with ingrowths in both cell types). Features characterized included wall ingrowths (from electron microscopic images), foliar vein density and photosynthetic capacity.
View Article and Find Full Text PDFThe potential role of foliar carbon export features in the acclimation of photosynthetic capacity to differences and changes in light environment was evaluated. These features included apoplastic vs. symplastic phloem loading, density of loading veins, plasmodesmatal frequency in intermediary cells, and the ratio of loading cells to sieve elements.
View Article and Find Full Text PDFPlants load sugars from photosynthesizing leaves into the phloem of exporting veins either "apoplastically" (by using H+/sucrose symporters) or "symplastically" (through plasmodesmata). The ability to regulate photosynthesis in response to the light environment was compared among apoplastic loaders (pea and spinach) and symplastic loaders (pumpkin and Verbascum phoeniceum). Plants were grown under low light (LL) or high light (HL) or transferred from LL to HL.
View Article and Find Full Text PDFThe aim of this study was to evaluate the putative role of the sucrosyl-galactosides, loliose [alpha-D-Gal (1,3) alpha-D-Glc (1,2) beta-D-Fru] and raffinose [alpha-D-Gal (1,6) alpha-D-Glc (1,2) beta-D-Fru], in drought tolerance of perennial ryegrass and to compare it with that of fructans. To that end, the loliose biosynthetic pathway was first established and shown to operate by a UDP-Gal: sucrose (Suc) 3-galactosyltransferase, tentatively termed loliose synthase. Drought stress increased neither the concentrations of loliose and raffinose nor the activities of loliose synthase and raffinose synthase (EC 2.
View Article and Find Full Text PDFThe role of fructans from leaf sheaths for the refoliation of Lolium perenne after severe defoliation was assessed by following the fate of (13)C-fructose supplied to leaf sheaths at the time of defoliation. At the end of the 4 h labelling period on defoliated plants, 77% of the (13)C incorporated was still located in leaf sheaths. Only 4% and 0.
View Article and Find Full Text PDF