Publications by authors named "Veronika von Messling"

Article Synopsis
  • RNA viruses can quickly adapt to new hosts by generating diverse genetic variations called "quasispecies," which can lead to drug resistance and immune evasion.
  • A study on the canine distemper virus revealed that its adaptation to ferrets varied based on genetic diversity, with non-recombinant viruses demonstrating faster adaptation compared to recombinant viruses.
  • Key mutations in the adapted viruses, particularly one in the nucleoprotein, were linked to enhanced disease severity, emphasizing the role of genetic memory in viral adaptation to new environments.
View Article and Find Full Text PDF

A novel Influenza A virus (subtype H7N9) emerged in spring 2013 and caused considerable mortality in zoonotically infected patients. To be prepared for potential pandemics, broadly effective and safe vaccines are crucial. Recombinant measles virus (MeV) encoding antigens of foreign pathogens constitutes a promising vector platform to generate novel vaccines.

View Article and Find Full Text PDF

Respiratory tract infections are among the deadliest communicable diseases worldwide. Severe cases of viral lung infections are often associated with a cytokine storm and alternating platelet numbers. We report that hematopoietic stem and progenitor cells (HSPCs) sense a non-systemic influenza A virus (IAV) infection via inflammatory cytokines.

View Article and Find Full Text PDF

Canine distemper virus (CDV) is a highly contagious pathogen and is known to enter the host via the respiratory tract and disseminate to various organs. Current hypotheses speculate that CDV uses the homologous cellular receptors of measles virus (MeV), SLAM and nectin-4, to initiate the infection process. For validation, here, we established the well-differentiated air-liquid interface (ALI) culture model from primary canine tracheal airway epithelial cells.

View Article and Find Full Text PDF

Measles virus (MeV) is a highly contagious pathogen that enters the human host via the respiratory route. Besides acute pathologies including fever, cough and the characteristic measles rash, the infection of lymphocytes leads to substantial immunosuppression that can exacerbate the outcome of infections with additional pathogens. Despite the availability of effective vaccine prophylaxis, measles outbreaks continue to occur worldwide.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally, and the number of worldwide cases continues to rise. The zoonotic origins of SARS-CoV-2 and its intermediate and potential spillback host reservoirs, besides humans, remain largely unknown. Because of ethical and experimental constraints and more important, to reduce and refine animal experimentation, we used our repository of well-differentiated airway epithelial cell (AEC) cultures from various domesticated and wildlife animal species to assess their susceptibility to SARS-CoV-2.

View Article and Find Full Text PDF

Zika virus (ZIKV) is an emerging arbovirus with recent global expansion. Historically, ZIKV infections with Asian lineages have been associated with mild disease such as rash and fever. However, recent Asian sub-lineages have caused outbreaks in the South Pacific and Latin America with increased prevalence of neurological disorders in infants and adults.

View Article and Find Full Text PDF

(LASV) is a rodent-borne arenavirus endemic to several West African countries. It is the causative agent of human Lassa fever, an acute viral hemorrhagic fever disease. To date, no therapeutics or vaccines against LASV have obtained regulatory approval.

View Article and Find Full Text PDF

The neuraminidase (NA) inhibitor (NAI) oseltamivir (OST) is the most widely used influenza antiviral drug. Several NA amino acid substitutions are reported to reduce viral susceptibility to OST in in vitro assays. However, whether there is a correlation between the level of reduction in susceptibility in vitro and the efficacy of OST against these viruses in vivo is not well understood.

View Article and Find Full Text PDF
Article Synopsis
  • Pigs are significant for spreading influenza A viruses due to their airway cells having binding sites for both human and avian strains, which supports the "mixing vessel theory."
  • Research showed that an avian H1N1 virus from European birds can replicate efficiently in pig airway cells without triggering a strong immune response, suggesting it can infect the lower respiratory tract.
  • The study indicates that while the binding affinity of sialic acids affects virus infectivity in some animal models, it's not the only factor for swine or human airway cells, prompting a reevaluation of pigs' role in interspecies virus transmission and the impact of avian viruses on mammals.
View Article and Find Full Text PDF

The current seasonal inactivated influenza vaccine protects only against a narrow range of virus strains as it triggers a dominant antibody response toward the hypervariable hemagglutinin (HA) head region. The discovery of rare broadly protective antibodies against conserved regions in influenza virus proteins has propelled research on distinct antigens and delivery methods to efficiently induce broad immunity toward drifted or shifted virus strains. Here, we report that adeno-associated virus (AAV) vectors expressing influenza virus HA or chimeric HA protected mice against homologous and heterologous virus challenges.

View Article and Find Full Text PDF

Measles is a disease caused by the highly infectious measles virus (MeV) that results in both viremia and lymphopenia. Lymphocyte counts recover shortly after the disappearance of measles-associated rash, but immunosuppression can persist for months to years after infection, resulting in increased incidence of secondary infections. Animal models and in vitro studies have proposed various immunological factors underlying this prolonged immune impairment, but the precise mechanisms operating in humans are unknown.

View Article and Find Full Text PDF

The high genetic variability of influenza A viruses poses a continual challenge to seasonal and pandemic vaccine development, leaving antiviral drugs as the first line of defense against antigenically different strains or new subtypes. As resistance against drugs targeting viral proteins emerges rapidly, we assessed the antiviral activity of already approved drugs that target cellular proteins involved in the viral life cycle and were orally bioavailable. Out of 15 candidate compounds, four were able to inhibit infection by 10- to 100-fold without causing toxicity, .

View Article and Find Full Text PDF

Paramyxoviruses and pneumoviruses have similar life cycles and share the respiratory tract as a point of entry. In comparative genome-scale siRNA screens with wild-type-derived measles, mumps, and respiratory syncytial viruses in A549 cells, a human lung adenocarcinoma cell line, we identified vesicular transport, RNA processing pathways, and translation as the top pathways required by all three viruses. As the top hit in the translation pathway, ABCE1, a member of the ATP-binding cassette transporters, was chosen for further study.

View Article and Find Full Text PDF

Adjuvanted influenza vaccines constitute a key element towards inducing neutralizing antibody responses in populations with reduced responsiveness, such as infants and elderly subjects, as well as in devising antigen-sparing strategies. In particular, squalene-containing adjuvants have been observed to induce enhanced antibody responses, as well as having an influence on cross-reactive immunity. To explore the effects of adjuvanted vaccine formulations on antibody response and their relation to protein-specific immunity, we propose different mathematical models of antibody production dynamics in response to influenza vaccination.

View Article and Find Full Text PDF

The recent Ebola virus outbreak has highlighted the therapeutic potential of antisera and renewed interest in this treatment approach. While human convalescent sera may not be readily available in the early stages of an outbreak, antisera of animal origin can be produced in a short time frame. Here, we compared adjuvanted virus-like particles (VLP) with recombinant modified vaccinia virus Ankara and vesicular stomatitis virus (VSV), both expressing the Ebola virus antigens.

View Article and Find Full Text PDF

Immune responses induced by currently licensed inactivated influenza vaccines are mainly directed against the hemagglutinin (HA) glycoprotein, the immunodominant antigen of influenza viruses. The resulting antigenic drift of HA requires frequent updating of the vaccine composition and annual revaccination. On the other hand, the levels of antibodies directed against the neuraminidase (NA) glycoprotein, the second major influenza virus antigen, vary greatly.

View Article and Find Full Text PDF

Upon infection, morbilliviruses such as measles virus, rinderpest virus, and canine distemper virus (CDV) initially target immune cells via the signaling lymphocyte activation molecule (SLAM) before spreading to respiratory epithelia through the adherens junction protein nectin-4. However, the roles of these receptors in transmission from infected to naive hosts have not yet been formally tested. To experimentally addressing this question, we established a model of CDV contact transmission between ferrets.

View Article and Find Full Text PDF

Despite the availability of safe and effective vaccines against measles and several animal morbilliviruses, they continue to cause regular outbreaks and epidemics in susceptible populations. Morbilliviruses are highly contagious and share a similar pathogenesis in their respective hosts. This review provides an overview of morbillivirus history and the general replication cycle and recapitulates Morbillivirus pathogenesis focusing on common and unique aspects seen in different hosts.

View Article and Find Full Text PDF

The paramyxovirus replication machinery comprises the viral large (L) protein and phosphoprotein (P-protein) in addition to the nucleocapsid (N) protein, which encapsidates the single-stranded RNA genome. Common to paramyxovirus N proteins is a C-terminal tail (Ntail). The mechanistic role and relevance for virus replication of the structurally disordered central Ntail section are unknown.

View Article and Find Full Text PDF

Zika virus (ZIKV) causes mostly asymptomatic infection or mild febrile illness. However, with an increasing number of patients, various clinical features such as microcephaly, Guillain-Barré syndrome and thrombocytopenia have also been reported. To determine which host factors are related to pathogenesis, the E protein of ZIKV was analyzed with the Informational Spectrum Method, which identifies common information encoded by primary structures of the virus and the respective host protein.

View Article and Find Full Text PDF