In numerous experimental systems, the neurohormone melatonin has been shown to protect against oxidative stress, an effect which appears to be the result of a combination of different actions. In this study, we have investigated the possible contribution to radical scavenging by substituted kynuramines formed from melatonin via pyrrole ring cleavage. N1-Acetyl-5-methoxykynuramine (AMK), a metabolite deriving from melatonin by mechanisms involving free radicals, exhibits potent antioxidant properties exceeding those of its direct precursor N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and its analog N1-acetylkynuramine (AK).
View Article and Find Full Text PDFOxidation of melatonin was followed by measuring chemiluminescence emitted during pyrrole ring cleavage, a process leading to the main oxidation product of this indoleamine, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK). Radical reactions of melatonin were studied in two variants of a moderately alkaline (pH 8) H2O2 system, one of which contained hemin as a catalyst. In both systems, light emission from melatonin oxidation lasted several hours.
View Article and Find Full Text PDF