Nitric oxide sustains root tip surface redox activity and restricts lipid peroxidation-triggered cell death in the root tips. In order to gain more insight into the involvement of nitric oxide (NO) in plant response to sudden flooding-induced hypoxic stress, we studied the effect of two NO donors, sodium nitroprusside and S-nitroso-L-glutathione, on short-term partial submergence-induced root growth inhibition, alteration in root surface redox activity, lipid peroxidation and cell death in two barley cultivars (cv.) at their early seedling stage.
View Article and Find Full Text PDFNBT and HE may be efficiently used for the detection of superoxide, while DCDHF-DA and DHR123 for the detection of peroxynitrite in intact barley root tips, only if PRXs and oxidoreductases are inhibited to avoid false-positive reactions. Strong peroxidase (PRX) and oxidoreductase activities were observed in the barley root tips that were markedly inhibited by NaN. Rapid and strong nitro-blue tetrazolium chloride (NBT) reduction is associated mainly with the vital functions of root cells but not with superoxide formation.
View Article and Find Full Text PDFAlready a short-term Cd treatment induces changes in gene expression in barley root tips via IAA and ROS signaling during mild and severe Cd stress, respectively. Even a short, 30 min, Cd treatment of roots induced a considerable alteration in gene expression in the barley root tips within an hour after the treatments. The very early activation of MYB1 transcription factor expression is partially regulated by auxin signaling in mildly stressed seedlings.
View Article and Find Full Text PDFThe pseudometallophyte Rumex acetosella L. occupies habitats with normal and high soil concentrations of zinc (Zn), lead (Pb), and copper (Cu). It remains unclear if the plants respond to the toxic metals by altering their morphology and increasing the resilience of their cells.
View Article and Find Full Text PDFActivation of GPX and enhanced NO level play a key role in IBA-mediated enhanced Cd tolerance in young barley roots. Application of exogenous indole-3-acetic acid (IAA) or an IAA precursor improves the tolerance of plants to heavy metals. However, the physiology of these tolerance mechanisms remains largely unknown.
View Article and Find Full Text PDFThe aim of this study was to observe the possible function of increased superoxide and NO production in the response of barley root tip to the harmful level of Cd. While superoxide generation was detected only in the transition zone, the formation of NO was observed in the apical elongation zones of the control root tips. However, the root region with the superoxide generation was also associated with peroxynitrite specific fluorescence signal.
View Article and Find Full Text PDFIn order to gain more insight into the involvement of mitochondrial complex III in the Cd-induced stress, we studied the effect of complex III inhibitors, antimycin A (AA), and myxothiazol (MYXO), on the Cd-induced ROS and NO generation in the barley root tip. Short-term exposure of barley roots to either MYXO or AA provoked a dose-dependent increase in both HO and NO formation. In contrast to HO generation, an enhanced superoxide formation in the transition zone of the root was a characteristic feature of AA-treated roots.
View Article and Find Full Text PDFExposure of barley roots to mM concentrations of L-NAME for 30 min caused a considerable root growth inhibition in a dose-dependent manner. The inhibition of root growth was higher in seedlings co-treated with Cd and L-NAME, compared with roots treated with Cd alone, despite the fact that L-NAME markedly reduced the uptake of Cd by roots. Treatment of roots with L-NAME evoked a decrease in NO level in both control and Cd-treated root tips only after a relatively long lag period, which overlaps with an increase in superoxide and HO levels and peroxynitrite generation.
View Article and Find Full Text PDFEnhanced superoxide generation and significant inhibition of succinate dehydrogenase (SDH) activity followed by a strong reduction of root growth were detected in barley seedlings exposed to a 5μM Hg concentration for 30min, which increased further in an Hg dose-dependent manner. While at a 25μM Hg concentration no cell death was detectable, a 50μM Hg treatment triggered cell death in the root meristematic zone, which was markedly intensified after the treatment of roots with 100μM Hg and was detectable in the whole root tips. Generation of superoxide and HO was a very rapid response of root tips occurring even after 5min of exposure to Hg.
View Article and Find Full Text PDFMild Cd stress-activated diphenyleneiodonium-sensitive superoxide production is utilized in root morphogenic responses, while severe Cd stress-induced robust rotenone-sensitive superoxide generation may lead to cell and root death. In barley, even a few minute exposure of roots to Cd concentration higher than 10 µM evoked a strong superoxide generation in the root transition zone. This superoxide generation was strongly inhibited by the inhibition of mitochondrial electron flow into complex III in the presence of the mitochondrial complex I inhibitor rotenone.
View Article and Find Full Text PDFAuxin is a master regulator of root growth by modulating its development under the constantly changing environment. Recently, an antagonistic interaction was suggested between SA and IAA signaling. Therefore, the purpose of this work was to analyze and compare the effect of the indole-3-acetic acid (IAA) signaling inhibitor p-chlorophenoxyisobutyric acid (PCIB) and salicylic acid (SA) as a potential IAA signaling inhibitor on the root growth, enzyme activity and reactive oxygen species (ROS) production in Cd- and IAA-treated barley root tips.
View Article and Find Full Text PDFThe purpose of this study was to analyse the alterations of glutathione peroxidase (GPX) expression and activity during the recovery period after a short-term treatment of barley root tip with cadmium (Cd) and hydrogen peroxide (H(2)O(2)). The transcript level of GPX increased as early as 1 h and GPX activity 3 h after short-term treatment independently of Cd concentration. In 15 μM Cd-treated roots, its expression reached a peak within 2 h and sustained until 3 h, after which it gradually declined.
View Article and Find Full Text PDFShort-term treatment (30 min) of barley roots with a low 10 μM Cd concentration induced significant H(2)O(2) production in the elongation and differentiation zone of the root tip 3h after treatment. This elevated H(2)O(2) production was accompanied by root growth inhibition and probably invoked root swelling in the elongation zone of the root tip. By contrast, a high 60 μM Cd concentration induced robust H(2)O(2) production in the elongation zone of the root tip already 1h after short-term treatment.
View Article and Find Full Text PDFThe short-term exposure of barley roots to low Al concentration caused significant root growth inhibition and radial swelling of roots. During Al treatment, the radial expansion of root cells occurred in root tissues representing elongation zone and meristem. Both low pH and Al treatments caused significant disruption of cell membranes in swollen roots.
View Article and Find Full Text PDFThe effect of cadmium (Cd) on the expression and activity of NADPH oxidase, peroxidase and oxalate oxidase as well as on the expression of aquaporins and dehydrins was studied in barley root tip. The root tip represented intact apical part of the barley root containing the root cap, meristems and elongation zone. Except stress induced by Cd, barley root tips were analysed after their exposure to phytotoxic concentration of mercury (Hg)-, hydrogen peroxide (H2O2)- or polyethylene glycol (PEG)-induced water stress in order to compare the Cd-induced changes with changes induced by these other stress factors.
View Article and Find Full Text PDFAluminum toxicity is an important stress factor in acid soils. Growth, respiration and permeability properties of root cells were studied in five cultivars of Lotus corniculatus subjected to aluminum (Al) or low pH stress. The cultivars showed significant differences in root elongation under stress conditions, which correlated with changes in membrane potential (E(M)) of root cortical cells.
View Article and Find Full Text PDF