The comparison of the changes of the lipid content in plant cell boundary membranes demonstrates a substantial role of the vacuolar membrane in response to hyperosmotic stress. Comparison of variations in the lipid content of plant cell boundary membranes (vacuolar and plasma membranes) isolated from beet root tissues (Beta vulgaris L.) was conducted after the effect of hyperosmotic stress.
View Article and Find Full Text PDFVariations in the content of tonoplast microdomains, isolated with the aid of a non-detergent technique, are induced by osmotic stress and may take part in plant cell adaptive mechanisms. Investigation of tonoplast microdomain lipids isolated with the aid of the non-detergent technique from beetroots (Beta vulgaris L.) subjected to either hyperosmotic or hypoosmotic stress was conducted.
View Article and Find Full Text PDFChanges in the fatty acid (FA) composition of total lipids of Pinus sylvestris needles at different pollution levels caused by emissions from a large aluminum smelter (BrAS) have been studied. In the needles of trees from unpolluted (background) territories, the FA spectrum is represented by 24 acids with prevalence of unsaturated FAs (71.6%).
View Article and Find Full Text PDFVacuolar and plasma membranes were isolated by a detergent-free method from beet roots (Beta vulgaris L.), and were fractionated in a sucrose density gradient of 15-60% by high-speed centrifugation at 200,000×g during 18 h. The membrane material distributed over the sucrose density gradient was analyzed for the presence of lipids characteristic of raft structures in different zones of the gradient.
View Article and Find Full Text PDFThe vacuolar membrane is an essential component in protecting the plant cell from stress factors. Different variations in the tonoplast lipid content, which depend on the type of stress, have been reviewed. The lipid content of vacuolar membranes of beet roots (Beta vulgaris L.
View Article and Find Full Text PDF