The role of extracellular vesicles (EVs) in mediating the immunosuppressory properties of mesenchymal stem cells (MSCs) has recently attracted remarkable scientific interest. The aim of this work was to analyze the transport mechanisms of membrane and cytoplasmic components between T lymphocytes and adipose tissue-derived MSCs (AD-MSCs), by focusing on the role of distinct populations of EVs, direct cell-cell contacts, and the soluble mediators per se in modulating T lymphocyte function. We found that neither murine thymocytes and human primary T cells nor Jurkat lymphoblastoid cells incorporated appreciable amounts of MSC-derived microvesicles (MVs) or exosomes (EXOs).
View Article and Find Full Text PDFBackground Aims: Mesenchymal stromal cells (MSCs) have powerful immunosuppressive activity. This function of MSCs is attributed to plethora of the expressed immunosuppressive factors, such as galectin-1 (Gal-1), a pleiotropic lectin with robust anti-inflammatory effect. Nevertheless, whether Gal-1 renders or contributes to the immunosuppressive effect of MSCs has not been clearly established.
View Article and Find Full Text PDFAlthough mesenchymal stem cells (MSCs) of distinct tissue origin have a large number of similarities and differences, it has not been determined so far whether tissue-resident MSCs are the progenies of one ancestor cell lineage or the results of parallel cell developmental events. Here we compared the expression levels of 177 genes in murine MSCs derived from adult and juvenile bone marrow and adult adipose tissue, as well as juvenile spleen, thymus, and aorta wall by quantitative real-time polymerase chain reaction and the results were partially validated at protein level. All MSC lines uniformly expressed a large set of genes including well-known mesenchymal markers, such as α-smooth muscle actin, collagen type I α-chain, GATA6, Mohawk, and vimentin.
View Article and Find Full Text PDFMesenchymal stem or multipotent stromal cells (MSCs) have been implicated in tissue maintenance and repair and regulating immune effector cells through different mechanisms. These functions in mouse were primarily described for bone marrow (BM)-derived MSCs. To learn more about MSCs of different tissue origin, we compared the immunophenotype, differentiation ability to adipocyte and bone and immunomodulatory activity of MSCs isolated from BM, spleen, thymus and aorta wall of 14-day-old C57Bl/6 mice.
View Article and Find Full Text PDFMesenchymal stem cells (MSC) - isolated from various tissues in humans and other species - are one of the most promising adult stem cell types due to their availability and the relatively simple requirements for in vitro expansion. They have the capacity to differentiate into several tissues, including bone, cartilage, tendon, muscle and adipose, and produce growth factors and cytokines that promote hematopoietic cell expansion and differentiation. In vivo, MSCs are able to repair damaged tissue from kidney, heart, liver, pancreas and gastrointestinal tract.
View Article and Find Full Text PDFSeveral recent studies have suggested that the adult bone marrow harbors cells that can influence beta-cell regeneration in diabetic animals. Other reports, however, have contradicted these findings. To address this issue, we used an animal model of type 1 diabetes in which the disease was induced with streptozotocin in mice.
View Article and Find Full Text PDFThere is an increasing body of evidence that suggests that genes involved in cell fate decisions and pattern formation during development also play a key role in the continuous cell fate decisions made by adult tissue stem cells. Here we show that prolonged in vitro culture (14 days) of murine bone marrow lineage negative cells in medium supplemented with three early acting cytokines (stem cell factor, Flk-2/Flt-3 ligand, thrombopoietin) and with immobilized Notch ligand, Jagged-1, resulted in robust expansion of serially transplantable hematopoietic stem cells with long-term repopulating ability. We found that the absolute number of marrow cells was increased approximately 8 to 14-fold in all cultures containing recombinant growth factors.
View Article and Find Full Text PDF