Metal-molecule-metal junctions are the key components of molecular electronics circuits. Gaining a microscopic understanding of their conducting properties is central to advancing the field. In the present contribution, we highlight the fundamental differences between single-molecule and ensemble junctions focusing on the fundamentals of transport through molecular clusters.
View Article and Find Full Text PDFStructure determination and prediction pose a major challenge to computational material science, demanding efficient global structure search techniques tailored to identify promising and relevant candidates. A major bottleneck is the fact that due to the many combinatorial possibilities, there are too many possible geometries to be sampled exhaustively. Here, an innovative computational approach to overcome this problem is presented that explores the potential energy landscape of commensurate organic/inorganic interfaces where the orientation and conformation of the molecules in the tightly packed layer is close to a favorable geometry adopted by isolated molecules on the surface.
View Article and Find Full Text PDFAn innovative strategy for electrostatically designing the electronic structure of 3D bulk materials is proposed to control charge carriers at the nanoscale. This is achieved by shifting the electronic levels of chemically identical semiconducting elements through the periodic arrangement of polar functional groups. For the example of covalent organic networks, by first-principles calculations, the resulting collective electrostatic effects are shown to allow a targeted manipulation of the electronic landscape such that spatially confined pathways for electrons and holes can be realized.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
September 2015
Tuning the transport properties of molecular junctions by chemically modifying the molecular structure is one of the key challenges for advancing the field of molecular electronics. In the present contribution, we investigate current-voltage characteristics of differently linked metal-molecule-metal systems that comprise either a single molecule or a molecular assembly. This is achieved by employing density functional theory in conjunction with a Green's function approach.
View Article and Find Full Text PDF