Publications by authors named "Veronika Lukacova"

Protein phosphorylation is a dynamic, reversible posttranslational modification that plays an important role in the regulation of cell signaling. Recently, label-free quantitative (LFQ) phosphoproteomics has become a powerful tool to analyze the phosphorylation of proteins within complex samples. In this chapter, we describe how to apply LFQ phosphoproteomics that is based on Fe-IMAC phosphopeptide enrichment followed by strong anion exchange (SAX) and porous graphitic carbon (PGC) fractionation strategies for identification and quantification of changes in the phosphoproteome in the fission yeast Schizosaccharomyces pombe.

View Article and Find Full Text PDF

Phosphorylation plays a crucial role in the regulation of many fundamental cellular processes. Phosphorylation levels are increased in many cancer cells where they may promote changes in mitochondrial homeostasis. Proteomic studies on various types of cancer identified 17 phosphorylation sites within the human ATP-dependent protease Lon, which degrades misfolded, unassembled and oxidatively damaged proteins in mitochondria.

View Article and Find Full Text PDF

In eukaryotes, pyruvate, a key metabolite produced by glycolysis, is converted by a tripartite mitochondrial pyruvate dehydrogenase (PDH) complex to acetyl-coenzyme A, which is fed into the tricarboxylic acid cycle. Two additional enzyme complexes with analogous composition catalyze similar oxidative decarboxylation reactions albeit using different substrates, the branched-chain ketoacid dehydrogenase (BCKDH) complex and the 2-oxoglutarate dehydrogenase (OGDH) complex. Comparative transcriptome analyses of diplonemids, one of the most abundant and diverse groups of oceanic protists, indicate that the conventional E1, E2, and E3 subunits of the PDH complex are lacking.

View Article and Find Full Text PDF

Many cellular processes require the activities of complex molecular machines composed of several protein subunits. Insights into these systems can be gained by isolation of protein complexes followed by analyses determining the identity, posttranslational modifications, and interactions among proteins. Here, we present a protocol for tandem affinity purification (TAP) of protein complexes from the fission yeast .

View Article and Find Full Text PDF

Background: The phylum Euglenozoa is a group of flagellated protists comprising the diplonemids, euglenids, symbiontids, and kinetoplastids. The diplonemids are highly abundant and speciose, and recent tools have rendered the best studied representative, Diplonema papillatum, genetically tractable. However, despite the high diversity of diplonemids, their lifestyles, ecological functions, and even primary energy source are mostly unknown.

View Article and Find Full Text PDF

Acylation modifications, such as the succinylation of lysine, are post-translational modifications and a powerful means of regulating protein activity. Some acylations occur nonenzymatically, driven by an increase in the concentration of acyl group donors. Lysine succinylation has a profound effect on the corresponding site within the protein, as it dramatically changes the charge of the residue.

View Article and Find Full Text PDF

The phosphorylation of proteins modulates various functions of proteins and plays an important role in the regulation of cell signaling. In recent years, label-free quantitative (LFQ) phosphoproteomics has become a powerful tool to analyze the phosphorylation of proteins within complex samples. Despite the great progress, the studies of protein phosphorylation are still limited in throughput, robustness, and reproducibility, hampering analyses that involve multiple perturbations, such as those needed to follow the dynamics of phosphoproteomes.

View Article and Find Full Text PDF