How do biological neural systems efficiently encode, transform and propagate information between the sensory periphery and the sensory cortex about sensory features evolving at different time scales? Are these computations efficient in normative information processing terms? While previous work has suggested that biologically plausible models of of such neural information processing may be implemented efficiently within a single processing layer, how such computations extend across several processing layers is less clear. Here, we model propagation of multiple time-varying sensory features across a sensory pathway, by extending the theory of efficient coding with spikes to efficient encoding, transformation and transmission of sensory signals. These computations are optimally realized by a multilayer spiking network with feedforward networks of spiking neurons (receptor layer) and recurrent excitatory-inhibitory networks of generalized leaky integrate-and-fire neurons (recurrent layers).
View Article and Find Full Text PDFThe principle of efficient coding posits that sensory cortical networks are designed to encode maximal sensory information with minimal metabolic cost. Despite the major influence of efficient coding in neuroscience, it has remained unclear whether fundamental empirical properties of neural network activity can be explained solely based on this normative principle. Here, we derive the structural, coding, and biophysical properties of excitatory-inhibitory recurrent networks of spiking neurons that emerge directly from imposing that the network minimizes an instantaneous loss function and a time-averaged performance measure enacting efficient coding.
View Article and Find Full Text PDFComput Struct Biotechnol J
January 2023
The brain is an information processing machine and thus naturally lends itself to be studied using computational tools based on the principles of information theory. For this reason, computational methods based on or inspired by information theory have been a cornerstone of practical and conceptual progress in neuroscience. In this Review, we address how concepts and computational tools related to information theory are spurring the development of principled theories of information processing in neural circuits and the development of influential mathematical methods for the analyses of neural population recordings.
View Article and Find Full Text PDFWhen a mammal, such as a macaque monkey, sees a complex natural image, many neurons in its visual cortex respond simultaneously. Here, we provide a protocol for studying the structure of population responses in laminar recordings with a machine learning model, the linear support vector machine. To unravel the role of single neurons in population responses and the structure of noise correlations, we use a multivariate decoding technique on time-averaged responses.
View Article and Find Full Text PDFIn visual areas of primates, neurons activate in parallel while the animal is engaged in a behavioral task. In this study, we examine the structure of the population code while the animal performs delayed match-to-sample tasks on complex natural images. The macaque monkeys visualized two consecutive stimuli that were either the same or different, while being recorded with laminar arrays across the cortical depth in cortical areas V1 and V4.
View Article and Find Full Text PDFWe propose a new model of the read-out of spike trains that exploits the multivariate structure of responses of neural ensembles. Assuming the point of view of a read-out neuron that receives synaptic inputs from a population of projecting neurons, synaptic inputs are weighted with a heterogeneous set of weights. We propose that synaptic weights reflect the role of each neuron within the population for the computational task that the network has to solve.
View Article and Find Full Text PDFPLoS Comput Biol
January 2017
Spontaneous activity is commonly observed in a variety of cortical states. Experimental evidence suggested that neural assemblies undergo slow oscillations with Up ad Down states even when the network is isolated from the rest of the brain. Here we show that these spontaneous events can be generated by the recurrent connections within the network and understood as signatures of neural circuits that are correcting their internal representation.
View Article and Find Full Text PDF