Publications by authors named "Veronika Jilkova"

Tardigrades are omnipresent microfauna with scarce record on their ecology in soils. Here, we investigated soil inhabiting tardigrade communities in five contrasting polar habitats, evaluating their abundance, diversity, species richness, and species composition. Moreover, we measured selected soil physico-chemical properties to find the drivers of tardigrade distribution among these habitats.

View Article and Find Full Text PDF

Fungi are among the few organisms on the planet that can metabolize recalcitrant carbon (C) but are also known to access recently produced plant photosynthate. Therefore, improved quantification of growth and substrate utilization by different fungal ecotypes will help to define the rates and controls of fungal production, the cycling of soil organic matter, and thus the C storage and CO buffering capacity in soil ecosystems. This pure-culture study of fungal isolates combined a dual stable isotope probing (SIP) approach, together with rapid analysis by tandem pyrolysis-gas chromatography-isotope ratio mass spectrometry to determine the patterns of water-derived hydrogen (H) and inorganic C assimilated into lipid biomarkers of heterotrophic fungi as a function of C substrate.

View Article and Find Full Text PDF

The predicted global increase in the frequency, severity, and intensity of forest fires includes Central Europe, which is not currently considered as a wildfire hotspot. Because of this, a detailed knowledge of long-term post-fire forest floor succession is essential for understanding the role of wildfires in Central European temperate forests. In this study, we used a space-for-time substitution approach and exploited a unique opportunity to observe successional changes in the physical, chemical, and microbial properties of the forest floor in coniferous forest stands on a chronosequence up to 110 years after fire.

View Article and Find Full Text PDF

Earthworms co-determine whether soil, as the largest terrestrial carbon reservoir, acts as source or sink for photosynthetically fixed CO. However, conclusive evidence for their role in stabilising or destabilising soil carbon has not been fully established. Here, we demonstrate that earthworms function like biochemical reactors by converting labile plant compounds into microbial necromass in stabilised carbon pools without altering bulk measures, such as the total carbon content.

View Article and Find Full Text PDF

We compared methane (CH4) and carbon dioxide (CO2) fluxes in samples collected from the aboveground parts of wood ant nests and in the organic and mineral layer of the surrounding forest floor. Gas fluxes were measured during a laboratory incubation, and microbial properties (abundance of fungi, bacteria and methanotrophic bacteria) and nutrient contents (total and available carbon and nitrogen) were also determined. Both CO2 and CH4 were produced from ant nest samples, indicating that the aboveground parts of wood ant nests act as sources of both gases; in comparison, the forest floor produced about four times less CO2 and consumed rather than produced CH4 Fluxes of CH4 and CO2 were positively correlated with contents of available carbon and nitrogen.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: