Publications by authors named "Veronika Hruschka"

Additive and lithographic manufacturing technologies using photopolymerisation provide a powerful tool for fabricating multiscale structures, which is especially interesting for biomimetic scaffolds and biointerfaces. However, most resins are tailored to one particular fabrication technology, showing drawbacks for versatile use. Hence, we used a resin based on thiol-ene chemistry, leveraging its numerous advantages such as low oxygen inhibition, minimal shrinkage and high monomer conversion.

View Article and Find Full Text PDF

Template-mediated self-assembly synthesis has produced a diverse range of biomimetic materials with unique physicochemical properties. Here, we fabricated novel fluorescent three-dimensional (3-D) hydroxyapatite (HAP) nanorod-assembled microspheres using iron quantum cluster (FeQC) as a hybrid template, containing three organic components: hemoglobin chains, piperidine, and iron clusters. The material characterization indicated that the synthesized HAP possessed a uniform rod-like morphology, ordered 3-D architecture, high crystallinity, self-activated fluorescence, and remarkable photostability.

View Article and Find Full Text PDF

Background: The need for bone graft substitutes including those being developed to be applied together with new strategies of bone regeneration such as tissue engineering and cell-based approaches is growing. No large animal model of bone regeneration has been accepted as a standard testing model. Standardization may be the key to moving systematically towards better bone regeneration.

View Article and Find Full Text PDF

Nanocrystalline hydroxyapatite (HA) has good biocompatibility and the potential to support bone formation. It represents a promising alternative to autologous bone grafting, which is considered the current gold standard for the treatment of low weight bearing bone defects. The purpose of this study was to compare three bone substitute pastes of different HA content and particle size with autologous bone and empty defects, at two time points (6 and 12 months) in an ovine scapula drillhole model using micro-CT, histology and histomorphometry evaluation.

View Article and Find Full Text PDF

A dual thermoresponsive and magnetic colloidal gel matrix is described for enhanced stem-cell culture. The combined properties of the material allow enzyme-free passaging and expansion of mesenchymal stem cells, as well as isolation of cells postculture by the simple process of lowering the temperature and applying an external magnetic field. The colloidal gel can be reconfigured with thermal and magnetic stimuli to allow patterning of cells in discrete zones and to control movement of cells within the porous matrix during culture.

View Article and Find Full Text PDF

Tissue engineering (TE) strategies aim at imitating the natural process of regeneration by using bioresorbable scaffolds that support cellular attachment, migration, proliferation, and differentiation. Based on the idea of combining a fully degradable polymer [poly(ɛ-caprolactone)] with a thermoresponsive polymer (polyethylene glycol methacrylate), a scaffold was developed, which liquefies below 20°C and solidifies at 37°C. In this study, this scaffold was evaluated for its ability to support C2C12 cells and human adipose-derived stem cells (ASCs) to generate an expandable three-dimensional (3D) construct for soft or bone TE.

View Article and Find Full Text PDF

Thermoreversible hydrogels for tissue engineering (TE) purposes have gained increased attention in recent years as they can be combined with cells and drugs and directly injected into the body. Following the fate of transplanted cells in situ is essential in characterizing their distribution and survival, as well as the expression of specific markers or cell-matrix interactions. Existing histological embedding methods, such as paraffin wax embedding, can mechanically damage some biomaterials during processing.

View Article and Find Full Text PDF