Publications by authors named "Veronika Herzog"

The maternal-to-zygotic transition (MZT) is a key developmental process in metazoan embryos that involves the activation of zygotic transcription (ZGA) and degradation of maternal transcripts. We employed metabolic mRNA sequencing (SLAMseq) to deconvolute the compound embryonic transcriptome in zebrafish. While mitochondrial zygotic transcripts prevail prior to MZT, we uncover the spurious transcription of hundreds of short and intron-poor genes as early as the 2-cell stage.

View Article and Find Full Text PDF

Cell fate transitions depend on balanced rewiring of transcription and translation programs to mediate ordered developmental progression. Components of the nonsense-mediated mRNA decay (NMD) pathway have been implicated in regulating embryonic stem cell (ESC) differentiation, but the exact mechanism is unclear. Here we show that NMD controls expression levels of the translation initiation factor and its premature termination codon-encoding isoform ( ).

View Article and Find Full Text PDF

Gene expression is controlled at multiple levels, including RNA transcription and turnover. But determining the relative contributions of RNA biogenesis and decay to the steady-state abundance of cellular transcripts remains challenging because conventional transcriptomics approaches do not provide the temporal resolution to derive the kinetic parameters underlying steady-state gene expression.Here, we describe a protocol that combines metabolic RNA labeling by 4-thiouridine with chemical nucleoside conversion and whole-transcriptome sequencing followed by bioinformatics analysis to determine RNA stability in cultured cells at a genomic scale.

View Article and Find Full Text PDF

Alternative cleavage and polyadenylation generates mRNA 3' isoforms in a cell type-specific manner. Due to finite available RNA sequencing data of organisms with vast cell type complexity, currently available gene annotation resources are incomplete, which poses significant challenges to the comprehensive interpretation and quantification of transcriptomes. In this chapter, we introduce 3'GAmES, a stand-alone computational pipeline for the identification and quantification of novel mRNA 3'end isoforms from 3'mRNA sequencing data.

View Article and Find Full Text PDF

The varying rates at which mRNAs decay are tightly coordinated with transcriptional changes to shape gene expression during development and disease. But currently available RNA sequencing approaches lack the temporal information to determine the relative contribution of RNA biogenesis, processing and turnover to the establishment of steady-state gene expression profiles.Here, we describe a protocol that combines metabolic RNA labeling with chemical nucleoside conversion by thiol-linked alkylation of 4-thiouridine to determine RNA stability in cultured cells (SLAMseq).

View Article and Find Full Text PDF

Argonaute-bound microRNAs silence mRNA expression in a dynamic and regulated manner to control organismal development, physiology, and disease. We employed metabolic small RNA sequencing for a comprehensive view on intracellular microRNA kinetics in Drosophila. Based on absolute rate of biogenesis and decay, microRNAs rank among the fastest produced and longest-lived cellular transcripts, disposing up to 10 copies per cell at steady-state.

View Article and Find Full Text PDF

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

View Article and Find Full Text PDF

Analysis of cell-type-specific transcriptomes is vital for understanding the biology of tissues and organs in the context of multicellular organisms. In this Protocol Extension, we combine a previously developed cell-type-specific metabolic RNA labeling method (thiouracil (TU) tagging) and a pipeline to detect the labeled transcripts by a novel RNA sequencing (RNA-seq) method, SLAMseq (thiol (SH)-linked alkylation for the metabolic sequencing of RNA). By injecting a uracil analog, 4-thiouracil, into transgenic mice that express cell-type-specific uracil phosphoribosyltransferase (UPRT), an enzyme required for 4-thiouracil incorporation into newly synthesized RNA, only cells expressing UPRT synthesize thiol-containing RNA.

View Article and Find Full Text PDF

Background: Methods to read out naturally occurring or experimentally introduced nucleic acid modifications are emerging as powerful tools to study dynamic cellular processes. The recovery, quantification and interpretation of such events in high-throughput sequencing datasets demands specialized bioinformatics approaches.

Results: Here, we present Digital Unmasking of Nucleotide conversions in K-mers (DUNK), a data analysis pipeline enabling the quantification of nucleotide conversions in high-throughput sequencing datasets.

View Article and Find Full Text PDF

The biogenesis of the RNA payload of mature sperm is of great interest, because RNAs delivered to the zygote at fertilization can affect early development. Here, we tested the hypothesis that small RNAs are trafficked to mammalian sperm during the process of post-testicular maturation in the epididymis. By characterizing small RNA dynamics during germ cell maturation in mice, we confirm and extend prior observations that sperm undergo a dramatic switch in the RNA payload from piRNAs to tRNA fragments (tRFs) upon exiting the testis and entering the epididymis.

View Article and Find Full Text PDF

Cell type-specific transcriptome analysis is an essential tool for understanding biological processes in which diverse types of cells are involved. Although cell isolation methods such as fluorescence-activated cell sorting (FACS) in combination with transcriptome analysis have widely been used so far, their time-consuming and harsh procedures limit their applications. Here, we report a novel metabolic RNA sequencing method, SLAM-ITseq, which metabolically labels RNA with 4-thiouracil in a specific cell type followed by detection through an RNA-seq-based method that specifically distinguishes the thiolated uridine by base conversion.

View Article and Find Full Text PDF

Defining direct targets of transcription factors and regulatory pathways is key to understanding their roles in physiology and disease. We combined SLAM-seq [thiol(SH)-linked alkylation for the metabolic sequencing of RNA], a method for direct quantification of newly synthesized messenger RNAs (mRNAs), with pharmacological and chemical-genetic perturbation in order to define regulatory functions of two transcriptional hubs in cancer, BRD4 and MYC, and to interrogate direct responses to BET bromodomain inhibitors (BETis). We found that BRD4 acts as general coactivator of RNA polymerase II-dependent transcription, which is broadly repressed upon high-dose BETi treatment.

View Article and Find Full Text PDF

Gene expression profiling by high-throughput sequencing reveals qualitative and quantitative changes in RNA species at steady state but obscures the intracellular dynamics of RNA transcription, processing and decay. We developed thiol(SH)-linked alkylation for the metabolic sequencing of RNA (SLAM seq), an orthogonal-chemistry-based RNA sequencing technology that detects 4-thiouridine (sU) incorporation in RNA species at single-nucleotide resolution. In combination with well-established metabolic RNA labeling protocols and coupled to standard, low-input, high-throughput RNA sequencing methods, SLAM seq enabled rapid access to RNA-polymerase-II-dependent gene expression dynamics in the context of total RNA.

View Article and Find Full Text PDF

Uridylation of RNA species represents an emerging theme in post-transcriptional gene regulation. In the microRNA pathway, such modifications regulate small RNA biogenesis and stability in plants, worms, and mammals. Here, we report Tailor, an uridylyltransferase that is required for the majority of 3' end modifications of microRNAs in Drosophila and predominantly targets precursor hairpins.

View Article and Find Full Text PDF

Argonaute proteins act at the core of nucleic acid-guided interference pathways that regulate gene expression and defend organisms against foreign genetic elements in all domains of life. Here, we review recent biophysical studies on how Argonaute proteins instruct oligonucleotides in the process of target finding, binding, cleavage, and release, as measured at high spatiotemporal resolution by single-molecule approaches. In the context of previous structural, biochemical, and computational studies, a model emerges for how Argonaute proteins manipulate the thermodynamic rules for nucleic acid hybridization to convey efficiency and specificity to RNA- and DNA-guided regulatory processes.

View Article and Find Full Text PDF

Polycomb/Trithorax response elements (PRE/TREs) can switch their function reversibly between silencing and activation by mechanisms that are poorly understood. Here we show that a switch in forward and reverse noncoding transcription from the Drosophila melanogaster vestigial (vg) PRE/TRE switches the status of the element between silencing (induced by the forward strand) and activation (induced by the reverse strand). In vitro, both noncoding RNAs inhibit PRC2 histone methyltransferase activity, but, in vivo, only the reverse strand binds PRC2.

View Article and Find Full Text PDF

Nonsense-mediated mRNA decay (NMD) is a eukaryotic post-transcriptional gene regulation mechanism that eliminates mRNAs with the termination codon (TC) located in an unfavorable environment for efficient translation termination. The best-studied NMD-targeted mRNAs contain premature termination codons (PTCs); however, NMD regulates even many physiological mRNAs. An exon-junction complex (EJC) located downstream from a TC acts as an NMD-enhancing signal, but is not generally required for NMD.

View Article and Find Full Text PDF