Although the fragmentation of the active pharmaceutical ingredient (API) is a phenomenon that is mentioned in many literature sources, no well-suited analytical tools for its investigation are currently known. We used the hot-stage microscopy method, already presented in our previous work, and studied the real fragmentation of the tadalafil particles in model tablets which were prepared under different compaction pressures. The morphology, spectral imaging and evaluation of plastic and elastic energies were also analyzed to support the hot-stage method.
View Article and Find Full Text PDFAlthough methods exist to readily determine the particle size distribution (PSD) of an active pharmaceutical ingredient (API) before its formulation into a final product, the primary challenge is to develop a method to determine the PSD of APIs in a finished tablet. To address the limitations of existing PSD methods, we used hot-stage microscopy to observe tablet disintegration during temperature change and, thus, reveal the API particles in a tablet. Both mechanical and liquid disintegration were evaluated after we had identified optimum milling time for mechanical disintegration and optimum volume of water for liquid disintegration.
View Article and Find Full Text PDFRapid and correct production of generic solid dosage forms requires a large amount of analytical data and conclusions. Modern analytical techniques have a good resolution and accuracy and allow obtaining a lot of information about the original product. Scanning electron microscopy (SEM) is used for observation and assessing individual layers, core and surface of solid dosage forms.
View Article and Find Full Text PDFThe solubility, absorption and distribution of a drug are involved in the basic aspects of oral bioavailability Solubility is an essential characteristic and influences the efficiency of the drug. Over the last ten years, the number of poorly soluble drugs has steadily increased. One of the progressive ways for increasing oral bioavaibility is the technique of nanoparticle preparation, which allows many drugs to thus reach the intended site of action.
View Article and Find Full Text PDFThe absorption, distribution, biotransformation and excretion of a drug involve its transport across cell membranes. This process is essential and influenced by the characteristics of the drug, especially its molecular size and shape, solubility at the site of its absorption, relative lipid solubility, etc. One of the progressive ways for increasing bioavaibility is a nanoparticle preparation technique.
View Article and Find Full Text PDF