Publications by authors named "Veronika E Neubrand"

Microglia play decisive roles during the development of the central nervous system (CNS). Phagocytosis is one of the classical functions attributed to microglia, being involved in nearly all phases of the embryonic and postnatal development of the brain, such as rapid clearance of cell debris to avoid an inflammatory response, controlling the number of neuronal and glial cells or their precursors, contribution to axon guidance and to refinement of synaptic connections. To carry out all these tasks, microglial cells are equipped with a panoply of receptors, that convert microglia to the "professional phagocytes" of the nervous parenchyma.

View Article and Find Full Text PDF

Background: Aquaporin-4 (AQP4) antibody-associated neuromyelitis optica spectrum disorder (NMOSD) is an antibody-mediated inflammatory disease of the central nervous system. We have undertaken a systematic review and meta-analysis to ascertain the sex ratio and mean age of onset for AQP4 antibody associated NMOSD. We have also explored factors that impact on these demographic data.

View Article and Find Full Text PDF

Microglia play an important protective role in the healthy nervous tissue, being able to react to a variety of stimuli that induce different intracellular cascades for specific tasks. Ca signaling can modulate these pathways, and we recently reported that microglial functions depend on the endoplasmic reticulum as a Ca store, which involves the Ca transporter SERCA2b. Here, we investigated whether microglial functions may also rely on the Golgi, another intracellular Ca store that depends on the secretory pathway Ca/Mn-transport ATPase isoform 1 (SPCA1).

View Article and Find Full Text PDF

Calcium signalling is involved in many processes in mammalian retina, from development to mature functions and neurodegeneration. Although proteins involved in Ca entry in retinal cells have been well studied, less is known about Ca-clearance. Among the Ca pumps, plasma membrane Ca-ATPases (PMCAs) have been identified as key proteins extruding Ca across the plasma membrane with specific distribution in developing and adult retina.

View Article and Find Full Text PDF

During development microglia colonize the central nervous system (CNS) and play an important role in programmed cell death, not only because of their ability to remove dead cells by phagocytosis, but also because they can promote the death of neuronal and glial cells. To study this process, we used as experimental systems the developing quail embryo retina and organotypic cultures of quail embryo retina explants (QEREs). In both systems, immature microglia show an upregulation of certain inflammatory markers, e.

View Article and Find Full Text PDF

Neurological disorders, including neurodegenerative diseases, are often characterized by neuroinflammation, which is largely driven by microglia, the resident immune cells of the central nervous system (CNS). Under these conditions, microglia are able to secrete neurotoxic substances, provoking neuronal cell death. However, microglia in the healthy brain carry out CNS-supporting functions.

View Article and Find Full Text PDF

Microglia are the tissue-resident macrophages of the central nervous parenchyma. In mammals, microglia are thought to originate from yolk sac precursors and posteriorly maintained through the entire life of the organism. However, the contribution of microglial cells from other sources should also be considered.

View Article and Find Full Text PDF

Recent evidence has shown that inflammation can contribute to all tumorigenic states. We have investigated the anti-inflammatory effects of a diamine-PEGylated derivative of oleanolic acid (OADP), in vitro and in vivo with inflammation models. In addition, we have determined the sub-cytotoxic concentrations for anti-inflammatory assays of OADP in RAW 264.

View Article and Find Full Text PDF

Activation of microglia is an early immune response to damage in the brain. Although a key role for Ca as trigger of microglial activation has been considered, little is known about the molecular scenario for regulating Ca homeostasis in these cells. Taking into account the importance of the endoplasmic reticulum as a cellular Ca store, the sarco(endo)plasmic reticulum Ca -ATPase (SERCA2b) is an interesting target to modulate intracellular Ca dynamics.

View Article and Find Full Text PDF

In the version of this article that was originally published [1]; some information in the "Author's contributions" section was omitted.

View Article and Find Full Text PDF

Background: Over-activated microglia play a central role during neuroinflammation, leading to neuronal cell death and neurodegeneration. Reversion of over-activated to neuroprotective microglia phenotype could regenerate a healthy CNS-supporting microglia environment. Our aim was to identify a dataset of intracellular molecules in primary microglia that play a role in the transition of microglia to a ramified, neuroprotective phenotype.

View Article and Find Full Text PDF

Amyloid β (Aβ)-induced neuroinflammation plays an important part in Alzheimer's disease (AD). Emerging evidence supports a role for the transient receptor potential melastatin-related 2 (TRPM2) channel in Aβ-induced neuroinflammation, but how Aβ induces TRPM2 channel activation and this relates to neuroinflammation remained poorly understood. We investigated the mechanisms by which Aβ activates the TRPM2 channel in microglial cells and the relationships to microglial activation and generation of tumor necrosis factor-α (TNF-α), a key cytokine implicated in AD.

View Article and Find Full Text PDF
Article Synopsis
  • Activated microglia are brain cells that can cause harm and lead to diseases if they become too active.
  • Researchers found that special stem cells from fat tissue can change the shape of these harmful microglia back to a healthier form.
  • This change helps reduce inflammation and supports the brain's health, making the cells better at cleaning up debris and protecting nerve cells.
View Article and Find Full Text PDF

An increasing body of evidence suggests that several membrane receptors--in addition to activating distinct signalling cascades--also engage in substantial crosstalk with each other, thereby adjusting their signalling outcome as a function of specific input information. However, little is known about the molecular mechanisms that control their coordination and integration of downstream signalling. A protein that is likely to have a role in this process is kinase-D-interacting substrate of 220 kDa [Kidins220, also known as ankyrin repeat-rich membrane spanning (ARMS), hereafter referred to as Kidins220/ARMS].

View Article and Find Full Text PDF

The expression of forms of synaptic plasticity, such as the phenomenon of long-term potentiation, requires the activity-dependent regulation of synaptic proteins and synapse composition. Here we show that ARMS (ankyrin repeat-rich membrane spanning protein)/Kidins220, a transmembrane scaffold molecule and BDNF TrkB substrate, is significantly reduced in hippocampal neurons after potassium chloride depolarization. The activity-dependent proteolysis of ARMS/Kidins220 was found to occur through calpain, a calcium-activated protease.

View Article and Find Full Text PDF

Neurite extension depends on extracellular signals that lead to changes in gene expression and rearrangement of the actin cytoskeleton. A factor that might orchestrate these signalling pathways with cytoskeletal elements is the integral membrane protein Kidins220/ARMS, a downstream target of neurotrophins. Here, we identified Trio, a RhoGEF for Rac1, RhoG and RhoA, which is involved in neurite outgrowth and axon guidance, as a binding partner of Kidins220.

View Article and Find Full Text PDF

Kinase D-interacting substrate of 220 kDa/ankyrin repeat-rich membrane spanning (Kidins220/ARMS) is a conserved membrane protein mainly expressed in brain and neuroendocrine cells, which is a downstream target of the signaling cascades initiated by neurotrophins and ephrins. We identified kinesin light chain 1 (KLC1) as a binding partner for Kidins220/ARMS by a yeast two-hybrid screen. The interaction between Kidins220/ARMS and the kinesin-1 motor complex was confirmed by glutathione S-transferase-pull-down and coimmunoprecipitation experiments.

View Article and Find Full Text PDF

A novel peripheral membrane protein (2c18) that interacts directly with the gamma 'ear' domain of the adaptor protein complex 1 (AP-1) in vitro and in vivo is described. Ultrastructural analysis demonstrates a colocalization of 2c18 and gamma1-adaptin at the trans-Golgi network (TGN) and on vesicular profiles. Overexpression of 2c18 increases the fraction of membrane-bound gamma1-adaptin and inhibits its release from membranes in response to brefeldin A.

View Article and Find Full Text PDF