Publications by authors named "Veronika Boskova"

Next-generation sequencing of pathogen quasispecies within a host yields data sets of tens to hundreds of unique sequences. However, the full data set often contains thousands of sequences, because many of those unique sequences have multiple identical copies. Data sets of this size represent a computational challenge for currently available Bayesian phylogenetic and phylodynamic methods.

View Article and Find Full Text PDF

Each new virus introduced into the human population could potentially spread and cause a worldwide epidemic. Thus, early quantification of epidemic spread is crucial. Real-time sequencing followed by Bayesian phylodynamic analysis has proven to be extremely informative in this respect.

View Article and Find Full Text PDF

Phylogenetics and phylodynamics are central topics in modern evolutionary biology. Phylogenetic methods reconstruct the evolutionary relationships among organisms, whereas phylodynamic approaches reveal the underlying diversification processes that lead to the observed relationships. These two fields have many practical applications in disciplines as diverse as epidemiology, developmental biology, palaeontology, ecology, and linguistics.

View Article and Find Full Text PDF

Many protein sequences have distinct domains that evolve with different rates, different selective pressures, or may differ in codon bias. Instead of modeling these differences by more and more complex models of molecular evolution, we present a multipartition approach that allows maximum-likelihood phylogeny inference using different codon models at predefined partitions in the data. Partition models can, but do not have to, share free parameters in the estimation process.

View Article and Find Full Text PDF

A complex interplay of viral, host, and ecological factors shapes the spatio-temporal incidence and evolution of human influenza viruses. Although considerable attention has been paid to influenza A viruses, a lack of equivalent data means that an integrated evolutionary and epidemiological framework has until now not been available for influenza B viruses, despite their significant disease burden. Through the analysis of over 900 full genomes from an epidemiological collection of more than 26,000 strains from Australia and New Zealand, we reveal fundamental differences in the phylodynamics of the two co-circulating lineages of influenza B virus (Victoria and Yamagata), showing that their individual dynamics are determined by a complex relationship between virus transmission, age of infection, and receptor binding preference.

View Article and Find Full Text PDF

Quantifying epidemiological dynamics is crucial for understanding and forecasting the spread of an epidemic. The coalescent and the birth-death model are used interchangeably to infer epidemiological parameters from the genealogical relationships of the pathogen population under study, which in turn are inferred from the pathogen genetic sequencing data. To compare the performance of these widely applied models, we performed a simulation study.

View Article and Find Full Text PDF

Background: The ability to accurately detect DNA copy number variation in both a sensitive and quantitative manner is important in many research areas. However, genome-wide DNA copy number analyses are complicated by variations in detection signal.

Results: While GC content has been used to correct for this, here we show that coverage biases are tissue-specific and independent of the detection method as demonstrated by next-generation sequencing and array CGH.

View Article and Find Full Text PDF