TET proteins (methylcytosine dioxygenases) play an important role in the regulation of gene expression. Dysregulation of their activity is associated with many serious pathogenic states such as oncological diseases. Regulation of their activity by specific inhibitors could represent a promising therapeutic strategy.
View Article and Find Full Text PDFDysregulation of iron homeostasis is one of the important processes in the development of many oncological diseases, such as pancreatic cancer. Targeting it with specific agents, such as an iron chelator, are promising therapeutic methods. In this study, we tested the cytotoxicity of novel azulene hydrazide-hydrazone-based chelators against pancreatic cancer cell lines (MIA PaCa-2, PANC-1, AsPC-1).
View Article and Find Full Text PDFTargeting of epigenetic mechanisms, such as the hydroxymethylation of DNA, has been intensively studied, with respect to the treatment of many serious pathologies, including oncological disorders. Recent studies demonstrated that promising therapeutic strategies could potentially be based on the inhibition of the TET1 protein (ten-eleven translocation methylcytosine dioxygenase 1) by specific iron chelators. Therefore, in the present work, we prepared a series of pyrrolopyrrole derivatives with hydrazide () or hydrazone (-) iron-binding groups.
View Article and Find Full Text PDFNon-psychotropic cannabinoids (e.g., cannabidiol, cannabinol and cannabigerol) are contained in numerous alimentary and medicinal products.
View Article and Find Full Text PDFGastric cancer is a common oncological disease. Although enormous efforts have been expended, possible therapeutic modalities are still limited. For this reason, new therapeutic approaches and agents are highly requested and intensively developed.
View Article and Find Full Text PDFTen-eleven translocation protein (TET) 1 plays a key role in control of DNA demethylation and thereby of gene expression. Dysregulation of these processes leads to serious pathological states such as oncological and neurodegenerative ones and thus TET 1 targeting is highly requested. Therefore, in this work, we examined the ability of hydrazones (acyl-, aroyl- and heterocyclic hydrazones) to inhibit the TET 1 protein and its mechanism of action.
View Article and Find Full Text PDF