Pathogenic mutations in the Gjb2 and Gjb6 genes, encoding connexin 26 (Cx26) and connexin 30 (Cx30), respectively, have been linked to the most frequent monogenic hearing impairment, nonsyndromic hearing loss, and deafness DFNB1. It is known that Cx26 plays an important role in auditory development, while the role of Cx30 in hearing remains controversial. Previous studies found that partial deletion of Cx26 can accelerate age-related hearing loss (ARHL), a multifactorial complex disorder, with both environmental and genetic factors contributing to the etiology of the disease.
View Article and Find Full Text PDFPathogenic mutations in the non-syndromic hearing loss and deafness 1 (DFNB1) locus are the primary cause of monogenic inheritance for prelingual hearing loss. To unravel molecular pathways involved in etiopathology and look for early degeneration biomarkers, we used a system biology approach to analyze Cx30 mice at an early cochlear post-natal developmental stage. These mice are a DFNB1 mouse model with severely reduced expression levels of two connexins in the inner ear, Cx30, and Cx26.
View Article and Find Full Text PDFLab Chip
August 2020
Prior work supports the hypothesis that ATP release through connexin hemichannels drives spontaneous Ca2+ signaling in non-sensory cells of the greater epithelial ridge (GER) in the developing cochlea; however, direct proof is lacking. To address this issue, we plated cochlear organotypic cultures (COCs) and whole cell-based biosensors with nM ATP sensitivity (ATP-WCBs) at the bottom and top of an ad hoc designed transparent microfluidic chamber, respectively. By performing dual multiphoton Ca2+ imaging, we monitored the propagation of intercellular Ca2+ waves in the GER of COCs and ATP-dependent Ca2+ responses in overlying ATP-WCBs.
View Article and Find Full Text PDFBackground: Numerous currently incurable human diseases have been causally linked to mutations in connexin (Cx) genes. In several instances, pathological mutations generate abnormally active Cx hemichannels, referred to also as "leaky" hemichannels. The goal of this study was to assay the in vivo efficacy of a potent antagonist antibody targeting Cx hemichannels.
View Article and Find Full Text PDFMutations in GJB2, the gene that encodes connexin 26 (Cx26), are the most common cause of sensorineural hearing impairment. The truncating variant 35delG, which determines a complete loss of Cx26 protein function, is the prevalent GJB2 mutation in several populations. Here, we generated and analyzed Gjb2 mice as a model of heterozygous human carriers of 35delG.
View Article and Find Full Text PDFFront Mol Neurosci
November 2017
Panx1 forms plasma membrane channels in brain and several other organs, including the inner ear. Biophysical properties, activation mechanisms and modulators of Panx1 channels have been characterized in detail, however the impact of on auditory function is unclear due to conflicts in published results. To address this issue, hearing performance and cochlear function of the -/- mouse strain, the first with a reported global ablation of , were scrutinized.
View Article and Find Full Text PDFMutations leading to changes in properties, regulation, or expression of connexin-made channels have been implicated in 28 distinct human hereditary diseases. Eight of these result from variants of connexin 26 (Cx26), a protein critically involved in cell-cell signaling in the inner ear and skin. Lack of non-toxic drugs with defined mechanisms of action poses a serious obstacle to therapeutic interventions for diseases caused by mutant connexins.
View Article and Find Full Text PDFWe have previously shown that in vitro transduction with bovine adeno-associated viral (BAAV) vectors restores connexin expression and rescues gap junction coupling in cochlear organotypic cultures from connexin-deficient mice that are models DFNB1 nonsyndromic hearing loss and deafness. The aims of this study were to manipulate inner ear connexin expression in vivo using BAAV vectors, and to identify the optimal route of vector delivery. Injection of a BAAV vector encoding a bacterial Cre recombinase via canalostomy in adult mice with floxed connexin 26 (Cx26) alleles promoted Cre/LoxP recombination, resulting in decreased Cx26 expression, decreased endocochlear potential, increased hearing thresholds, and extensive loss of outer hair cells.
View Article and Find Full Text PDFUnlabelled: Mutations in the genes encoding for gap junction proteins connexin 26 (Cx26) and connexin 30 (Cx30) have been linked to syndromic and nonsyndromic hearing loss in mice and humans. The release of ATP from connexin hemichannels in cochlear nonsensory cells has been proposed to be the main trigger for action potential activity in immature sensory inner hair cells (IHCs), which is crucial for the refinement of the developing auditory circuitry. Using connexin knock-out mice, we show that IHCs fire spontaneous action potentials even in the absence of ATP-dependent intercellular Ca signaling in the nonsensory cells.
View Article and Find Full Text PDFObjectives: The ultrasound investigation of carotid and vertebral arteries is routinely performed in stroke patients to determine the etiopathogenetic classification and possible need of revascularization. However, the medium and long-term prognostic implications of carotid and vertebral ultrasound in ischemic stroke patients are not yet known.
Methods: This study included 309 ischemic stroke patients (mean age 76.
Ionizing and nonionizing radiation affect not only directly targeted cells but also surrounding "bystander" cells. The underlying mechanisms and therapeutic role of bystander responses remain incompletely defined. Here we show that photosentizer activation in a single cell triggers apoptosis in bystander cancer cells, which are electrically coupled by gap junction channels and support the propagation of a Ca2+ wave initiated in the irradiated cell.
View Article and Find Full Text PDFNotexin (Ntx) is a group I phospholipase A2 (PLA2) protein, main component of the Australian snake Notechis scutatus scutatus venom. It is both a presynaptic neurotoxin and a myotoxin. In this work, for the first time, a method for the production and folding of recombinant Ntx was developed.
View Article and Find Full Text PDFBackground: Adipocyte-fatty acid binding protein (A-FABP) is an intracellular lipid transporter that mediates metabolically triggered inflammation, and it is associated with insulin resistance, atherogenic dyslipidemia, and cardiovascular risk.
Aims: The aim of this study was to evaluate A-FABP behavior in elderly people, and especially its association with liver steatosis at abdominal ultrasound.
Method: Cross-sectional study of two cohort of individuals with and without steatosis, with assessment of several clinical and laboratory variables.