Publications by authors named "Veronica Policht"

Vertical heterostructures of transition metal dichalcogenides (TMDs) host interlayer excitons with electrons and holes residing in different layers. With respect to their intralayer counterparts, interlayer excitons feature longer lifetimes and diffusion lengths, paving the way for room temperature excitonic optoelectronic devices. The interlayer exciton formation process and its underlying physical mechanisms are largely unexplored.

View Article and Find Full Text PDF

The search for synthetic materials that mimic natural photosynthesis by converting solar energy into other more useful forms of energy is an ever-growing research endeavor. Graphene-based materials, with their exceptional electronic and optical properties, are exemplary candidates for high-efficiency solar energy harvesting devices. High photoactivity can be conveniently achieved by functionalizing graphene with small molecule organic semiconductors whose band-gaps can be tuned by structural modification, leading to interactions between the π-conjugated electronic systems in both the semiconductor and graphene.

View Article and Find Full Text PDF

We report two-dimensional electronic spectroscopy (2DES) experiments on the bacterial reaction center (BRC) from purple bacteria, revealing hidden vibronic and excitonic structure. Through analysis of the coherent dynamics of the BRC, we identify multiple quasi-resonances between pigment vibrations and excitonic energy gaps, and vibronic coherence transfer processes that are typically neglected in standard models of photosynthetic energy transfer and charge separation. We support our assignment with control experiments on bacteriochlorophyll and simulations of the coherent dynamics using a reduced excitonic model of the BRC.

View Article and Find Full Text PDF

Monolayer transition metal dichalcogenides (ML-TMDs) are two-dimensional semiconductors that stack to form heterostructures (HSs) with tailored electronic and optical properties. TMD/TMD-HSs like WS/MoS have type II band alignment and form long-lived (nanosecond) interlayer excitons following sub-100 fs interlayer charge transfer (ICT) from the photoexcited intralayer exciton. While many studies have demonstrated the ultrafast nature of ICT processes, we still lack a clear physical understanding of ICT due to the trade-off between temporal and frequency resolution in conventional transient absorption spectroscopy.

View Article and Find Full Text PDF

Multidimensional spectroscopy is the optical analog to nuclear magnetic resonance, probing dynamical processes with ultrafast time resolution. At optical frequencies, the technical challenges of multidimensional spectroscopy have hindered its progress until recently, where advances in laser sources and pulse-shaping have removed many obstacles to its implementation. Multidimensional spectroscopy in the visible and infrared (IR) regimes has already enabled respective advances in our understanding of photosynthesis and the structural rearrangements of liquid water.

View Article and Find Full Text PDF

Bacteriochlorophyll a (BChla) is the most abundant pigment found in the Bacterial Reaction Center (BRC) and light-harvesting proteins of photosynthetic purple and green bacteria. Recent two-dimensional electronic spectroscopy (2DES) studies of photosynthetic pigment-protein complexes including the BRC and the Fenna-Matthews-Olson (FMO) complex have shown oscillatory signals, or coherences, whose physical origin has been hotly debated. To better understand the observations of coherence in larger photosynthetic systems, it is important to carefully characterize the spectroscopic signatures of the monomeric pigments.

View Article and Find Full Text PDF

The bacterial reaction center (BRC) serves as an important model system for understanding the charge separation processes in photosynthesis. Knowledge of the electronic structure of the BRC is critical for understanding its charge separation mechanism. While it is well-accepted that the "special pair" pigments are strongly coupled, the degree of coupling among other BRC pigments has been thought to be relatively weak.

View Article and Find Full Text PDF

In the initial steps of photosynthesis, reaction centers convert solar energy to stable charge-separated states with near-unity quantum efficiency. The reaction center from purple bacteria remains an important model system for probing the structure-function relationship and understanding mechanisms of photosynthetic charge separation. Here we perform 2D electronic spectroscopy (2DES) on bacterial reaction centers (BRCs) from two mutants of the purple bacterium , spanning the Q absorption bands of the BRC.

View Article and Find Full Text PDF

There has been considerable recent interest in the observation of coherent dynamics in photosynthetic systems by 2D electronic spectroscopy (2DES). In particular, coherences that persist during the "waiting time" in a 2DES experiment have been attributed to electronic, vibrational, and vibronic origins in various systems. The typical method for characterizing these coherent dynamics requires the acquisition of 2DES spectra as a function of waiting time, essentially a 3DES measurement.

View Article and Find Full Text PDF

We study a layer of grains atop a plate which oscillates sinusoidally in the direction of gravity, using three-dimensional, time-dependent numerical solutions of continuum equations to Navier-Stokes order as well as hard-sphere molecular dynamics simulations. For high accelerational amplitudes of the plate, the layer exhibits a steady-state "density inversion" in which a high-density portion of the layer is supported by a lower-density portion. At low accelerational amplitudes, the layer exhibits oscillatory time dependence that is strongly correlated to the motion of the plate.

View Article and Find Full Text PDF