Publications by authors named "Veronica Perez-Schuster"

In order to cope with the challenges of living in dynamic environments, animals rapidly adjust their behaviors in coordination with different physiological responses. Here, we studied whether threatening visual stimuli evoke different heart rate patterns in arthropods and whether these patterns are related with defensive behaviors. We identified two sequential phases of crab's cardiac response that occur with a similar timescale to that of the motor arrest and later escape response.

View Article and Find Full Text PDF

Many animal species take advantage of polarization vision for vital tasks such as orientation, communication and contrast enhancement. Previous studies have suggested that decapod crustaceans use a two-channel polarization system for contrast enhancement. Here, we characterize the polarization contrast sensitivity in a grapsid crab We estimated the polarization contrast sensitivity of the animals by quantifying both their escape response and changes in heart rate when presented with polarized motion stimuli.

View Article and Find Full Text PDF

The development of new imaging and optogenetics techniques to study the dynamics of large neuronal circuits is generating datasets of unprecedented volume and complexity, demanding the development of appropriate analysis tools. We present a comprehensive computational workflow for the analysis of neuronal population calcium dynamics. The toolbox includes newly developed algorithms and interactive tools for image pre-processing and segmentation, estimation of significant single-neuron single-trial signals, mapping event-related neuronal responses, detection of activity-correlated neuronal clusters, exploration of population dynamics, and analysis of clusters' features against surrogate control datasets.

View Article and Find Full Text PDF

From development up to adulthood, the vertebrate brain is continuously supplied with newborn neurons that integrate into established mature circuits. However, how this process is coordinated during development remains unclear. Using two-photon imaging, GCaMP5 transgenic zebrafish larvae, and sparse electroporation in the larva's optic tectum, we monitored spontaneous and induced activity of large neuronal populations containing newborn and functionally mature neurons.

View Article and Find Full Text PDF

The brain is spontaneously active, even in the absence of sensory stimulation. The functionally mature zebrafish optic tectum shows spontaneous activity patterns reflecting a functional connectivity adapted for the circuit's functional role and predictive of behavior. However, neither the emergence of these patterns during development nor the role of retinal inputs in their maturation has been characterized.

View Article and Find Full Text PDF

Following moving visual stimuli (conditioning stimuli, CS), many organisms perceive, in the absence of physical stimuli, illusory motion in the opposite direction. This phenomenon is known as the motion aftereffect (MAE). Here, we use MAE as a tool to study the neuronal basis of visual motion perception in zebrafish larvae.

View Article and Find Full Text PDF

Practice can enhance of perceptual sensitivity, a well-known phenomenon called perceptual learning. However, the effect of practice on subjective perception has received little attention. We approach this problem from a visual psychophysics and computational modeling perspective.

View Article and Find Full Text PDF

Spontaneous neuronal activity is spatiotemporally structured, influencing brain computations. Nevertheless, the neuronal interactions underlying these spontaneous activity patterns, and their biological relevance, remain elusive. Here, we addressed these questions using two-photon calcium imaging of intact zebrafish larvae to monitor the neuron-to-neuron spontaneous activity fine structure in the tectum, a region involved in visual spatial detection.

View Article and Find Full Text PDF