Global industrialization and natural resources extraction have left cocktails of environmental pollutants. Thus, this work focuses on developing a defined actinobacteria consortium able to restore systems co-contaminated with pollutants occurring in Argentinian environments. In this context, five actinobacteria were tested in solid medium to evaluate antagonistic interactions and tolerance against lindane (LIN), Reactive Black B-V (RBV), phenanthrene (Ph) and Cr(VI).
View Article and Find Full Text PDFColloids Surf B Biointerfaces
February 2019
The present work reports the production of bioemulsifiers (BEs) by an environmental bacterium closely related to Bacillus spp., using agro-industrial wastes and by-products as low-cost carbon sources. Maximum emulsifying activity was detected using crude glycerol (CG) (E = 59%), producing 2.
View Article and Find Full Text PDFVinasse is a waste material from distillery industries, which causes major environmental problems around the world. Argentina alone produces about 4 billion liters of vinasse annually; consequently, diverse biological eco-friendly treatments are evaluated for their ability to reduce the detrimental effects. The present study reports on the degradation of a 50% (v/v) local vinasse sample by an autochthonous fungus identified as Aspergillus sp.
View Article and Find Full Text PDFThe use of living actinobacteria biomass to clean up contaminated soils is an attractive biotechnology approach. However, biomass generation from cheap feedstock is the first step to ensure process sustainability. The present work reports the ability of four actinobacteria, Streptomyces sp.
View Article and Find Full Text PDFActinobacteria exhibit cosmopolitan distribution since their members are widely distributed in aquatic and terrestrial ecosystems. In the environment they play relevant ecological roles including recycling of substances, degradation of complex polymers, and production of bioactive molecules. Biotechnological potential of actinobacteria in the environment was demonstrated by their ability to remove organic and inorganic pollutants.
View Article and Find Full Text PDFChlordane bioremediation using actinobacteria mixed culture is an attractive clean-up technique. Their ability to produce bioemulsifiers could increase the bioavailability of this pesticide. In order to select a defined actinobacteria mixed culture for chlordane remediation, compatibility assays were performed among six Streptomyces strains.
View Article and Find Full Text PDFVinasse is a complex effluent created during production of ethyl alcohol, which can present serious pollution hazard in areas where it is discharged. A variety of technologies, many based upon recovery of the effluent via microbial pathways, are continually being evaluated in order to mitigate the pollution potential of vinasse. The present work reports on initial advances related to the effectiveness of the actinobacterium Streptomyces sp.
View Article and Find Full Text PDFIn recent years, increasing interest has been shown in the use of bioemulsifiers as washing agents that can enhance desorption of soil-bound metals. However, high production costs derived from the use of expensive substrates for formulation of the fermentation media represent the main challenge for full, large-scale implementation of bioemulsifiers. This work reports on a first study of bioemulsifier production by the actinobacterium Amycolatopsis tucumanensis DSM 45259 using different carbon and nitrogen sources.
View Article and Find Full Text PDFCurrent problems of filamentous fungi fermentations and their further successful developments as microbial cell factories are dependent on control fungal morphology. In this connection, this work explored new experimental procedures in order to quantitatively check the potential of some culture conditions to induce a determined fungal morphology by altering both hyphal morphology and conidia adhesion capacity. The capacity of environmental conditions to modify hyphal morphology was evaluated by examining the influence of some culture conditions on the cell wall lytic potential of Aspergillus niger MYA 135.
View Article and Find Full Text PDFSurface-active compounds such as synthetic emulsifiers have been used for several decades, both for the degradation of hydrocarbons and increasing desorption of soil-bound metals. However, due to their high toxicity, low degradability, and production costs unaffordable for use in larger ecosystems, synthetic emulsifiers have been gradually replaced by those derived from natural sources such as plants or microbes. In previous studies, the bacterium Streptomyces sp.
View Article and Find Full Text PDFInsecurity in the supply of fossil fuels, volatile fuel prices, and major concerns regarding climate change have sparked renewed interest in the production of fuels from renewable resources. Because of this, the use of biodiesel has grown dramatically during the last few years and is expected to increase even further in the future. Biodiesel production through the use of microbial systems has marked a turning point in the field of biofuels since it is emerging as an attractive alternative to conventional technology.
View Article and Find Full Text PDFThe potential biotechnological applications of both constitutive and inducible lipase sources from Aspergillus niger MYA 135 were evaluated. To this end, the effect of environmental conditions on mycelium-bound lipase production from this strain was studied, when cultured either in the absence or presence of 2% olive oil. It was previously reported that mycelium-bound lipase from Aspergillus niger MYA 135 possess high stability in reaction mixtures containing ethanol; which could be especially important for their use in biodiesel synthesis.
View Article and Find Full Text PDFUnder the current assay conditions, lipase production in mineral medium was only detected in the presence of vegetable oils, reaching the highest specific activity with olive oil. In this way, effect of different environmental conditions on fungal morphology and olive oil-induced extracellular lipases production from Aspergillus niger MYA 135 was studied. It was observed that addition of 1.
View Article and Find Full Text PDF