In this study, Al-AlC compounds were manufactured by mechanical milling followed by heat treatment. To analyze the microstructural evolution, the composites were sintered at 550 °C at different sintering times of 2, 4 and 6 h. The mechanical results suggest that dislocation density and crystallite size primarily contribute to hardening before the sintering process, with a minimal contribution from particle dispersion in this condition.
View Article and Find Full Text PDFHigh-energy ball milling is a process suitable for producing composite powders whose achieved microstructure can be controlled by the processing parameters. Through this technique, it is possible to obtain a homogeneous distribution of reinforced material into a ductile metal matrix. In this work, some Al/CGNs nanocomposites were fabricated through a high-energy ball mill to disperse nanostructured graphite reinforcements produced in situ in the Al matrix.
View Article and Find Full Text PDFAluminum powder with different C and C-Cu mixtures powders were fabricated by powder metallurgy, using high-energy mechanical milling as a pre-treatment of powders. To evaluate the combined effect of the C-Cu mixture and the process conditions, such as sintering temperature/time and milling time, on the yield stress and hardness, two experimental designs were carried out. The results were analyzed with Minitab Statistical Software using contour plots.
View Article and Find Full Text PDFIn the present work, nanocomposites-based 3XXX series Al alloy with three different types of hard nanoparticles, including TiO, C, and CeO, were produced employing two techniques such as mechanical milling and stir-casting method in order to evaluate the viability of integration of the reinforcement in the Al matrix. The integration and dispersion capability of the reinforcement into the Al alloy (3xxx Series) matrix was evaluated, using a phase angle difference and surface roughness analyses by atomic force microscopy operated in both the contact mode (CM-AFM) and tapping mode (TM-AFM), respectively. The distribution profile of both rugosity and the phase angle shift was used to statically quantify the integration and dispersion of the reinforcement into the extruded samples, by using the root mean square (RMS) parameter and phase shift coupled with the events number (EN) parameter.
View Article and Find Full Text PDF