It is well-known that consumption of synthetic and natural food additives has both positive and negative effects in the human body. However, it is not clear yet how food additives are related to the development of Parkinson's disease. Therefore, in this review work, the food additive effects related to the gut microbiota-brain axis and the processes that are carried out to develop Parkinson's disease are studied.
View Article and Find Full Text PDFInsects from the Orthoptera order possess important biological activities such as wound healing and represent a therapeutic resource in traditional medicine worldwide. Hence, this study addressed the characterisation of lipophilic extracts from (Girard), identifying compounds with potential healing properties. For that, four extracts were obtained from sample 1 (head-legs) and sample 2 (abdomen): extract A (hexane/sample 1), extract B (hexane/sample 2), extract C (ethyl acetate/sample 1) and extract D (ethyl acetate/sample 2).
View Article and Find Full Text PDFSome food additives have demonstrated to induce dysbiosis leading to the development gut and gastrointestinal diseases. In order to clarify how this dysbiosis affects the microbiota gut-brain axis, a systematic interpretative literature review is carried out in this work. This review was made in seven academic search engines using the keywords shown below.
View Article and Find Full Text PDFExposure to TiO NPs induces several cellular alterations after NPs uptake including disruption of cytoskeleton that is crucial for lung physiology but is not considered as a footprint of cell damage. We aimed to investigate cytoskeleton disturbances and the impact on cell migration induced by an acute TiO NPs exposure (24 h) and the recovery capability after 6 days of NPs-free treatment, which allowed investigating if cytoskeleton damage was reversible. Exposure to TiO NPs (10 μg/cm) for 24 h induced a decrease 20.
View Article and Find Full Text PDFTitanium dioxide nanoparticles (TiO NPs) production has been used for pigment, food and cosmetic industry and more recently, shaped as belts for treatment of contaminated water, self-cleaning windows and biomedical applications. However, the toxicological data have demonstrated that TiO NPs inhalation induce inflammation in in vivo models and in vitro exposure leads to cytotoxicity and DNA damage. Dermal exposure has limited adverse effects and the possible risks for implants used for tissue regeneration is still under research.
View Article and Find Full Text PDFColorectal cancer is the fourth worldwide cause of death and even if some dietary habits are consider risk factors, the contribution of food additives including foodgrade titanium dioxide (TiO2), designated as E171, has been poorly investigated. We hypothesized that oral E171 intake could have impact on the enhancement of colorectal tumor formation and we aimed to investigate if E171 administration could enhance tumor formation in a colitis associated cancer (CAC) model. BALB/c male mice were grouped as follows: a) control, b) E171, c) CAC and d) CAC + E171 group (n = 6).
View Article and Find Full Text PDFEnviron Res
January 2015
Titanium dioxide nanoparticles (TiO2 NPs) studies have been performed using relatively high NPs concentration under acute exposure and limited studies have compared shape effects. We hypothesized that midterm exposure to low TiO2 NPs concentration in lung epithelial cells induces carcinogenic characteristics modulated partially by NPs shape. To test our hypothesis we synthesized NPs shaped as belts (TiO2-B) using TiO2 spheres (TiO2-SP) purchased from Sigma Aldrich Co.
View Article and Find Full Text PDFTitanium dioxide has been classified in the 2B group as a possible human carcinogen by the International Agency for Research on Cancer, and amid concerns of its exposure, cell cycle alterations are an important one. However, several studies show inconclusive effects, mainly because it is difficult to compare cell cycle effects caused by TiO2 nanoparticle (NP) exposure between different shapes and sizes of NP, cell culture types, and time of exposure. In addition, cell cycle is frequently analyzed without cell cycle synchronization, which may also mask some effects.
View Article and Find Full Text PDFTitanium dioxide nanoparticles (TiO2 NPs) have been classified as possibly carcinogenic to humans and they are an important nanomaterial widely used in pharmaceutical and paint industries. Inhalation is one of the most important routes of exposure in occupational settings. Several experimental models have shown that oxidative stress and inflammation are key mediators of cell damage.
View Article and Find Full Text PDFParticulate matter, with a mean aerodynamic diameter of ≤10 µm (PM10), exposure is considered as a risk factor for cardiovascular and respiratory diseases. The mechanism of cell damage induced by PM10 exposure is related to mitochondrial alterations. The aim of this work was to investigate the detailed alterations induced by PM10 on mitochondrial function.
View Article and Find Full Text PDFTitanium dioxide nanoparticles (TiO(2) NPs) are used in an increasing number of human products such as cosmetics, sunscreen, toothpaste and paints. However, there is clear evidence about effects associated to TiO(2) NPs exposure, which include lung inflammation and tumor formation and these effects are related to reactive oxygen species (ROS) formation. The ROS generation could be attributed to a mitochondrial dysfunction.
View Article and Find Full Text PDF