Publications by authors named "Veronica Farrugia Drakard"

Artificial structures have become widespread features of coastal marine environments, and will likely proliferate further over the coming decades. These constitute new hard substrata in the marine environment which provide a fundamentally different habitat than natural shores. Eco-engineering solutions aim to ameliorate these differences by combining ecological knowledge and engineering criteria in the construction and modification of artificial substrata.

View Article and Find Full Text PDF

Kelp forests worldwide are threatened by both climate change and localized anthropogenic impacts. Species with cold-temperate, subpolar, or polar distributions are projected to experience range contractions over the coming decades, which may be exacerbated by climatic events such as marine heatwaves and increased freshwater and sediment input from rapidly contracting glaciers. The northeast Pacific has an extensive history of harvesting and cultivating kelps for subsistence, commercial, and other uses, and, therefore, declines in kelp abundance and distributional shifts will have significant impacts on this region.

View Article and Find Full Text PDF

Artificial structures are an increasingly common feature of coastal marine environments. These structures are poor surrogates of natural rocky shores, and generally support less diverse communities and reduced population sizes. Little is known about sub-lethal effects of such structures in terms of demographic properties and reproductive potential, both of which may influence the dynamics and long-term viability of populations.

View Article and Find Full Text PDF

Artificial structures are widespread features of coastal environments, but are poor surrogates of natural rocky shores because they generally support depauperate assemblages with reduced population sizes. This has generated significant interest in eco-engineering solutions, including retrofitting seawalls with artificial rockpools to increase water retention and provide microhabitats. Although these have proven effective at individual sites, widespread uptake is contingent on evidence of consistent benefits across a range of contexts.

View Article and Find Full Text PDF

Artificial structures are poor surrogates of natural rocky shores, meaning they generally support depauperate assemblages. These differences may result from a combination of recruitment processes, biotic interactions, and structuring by environmental factors. In this study, plots were cleared on two seawalls and two natural shores at two separate timepoints - in August 2020 (summer) and February 2021 (winter) - and monitored over one year to determine the influence of timing of disturbance on recruitment and succession.

View Article and Find Full Text PDF

Artificial structures often support depauperate communities compared to natural rocky shores. Understanding variation in ecological success across shore types, particularly regarding habitat-forming species or those with structuring roles, is important to determine how artificial structure proliferation may influence ecosystem functioning and services. We investigated the population structure, sex ratio and reproductive potential of limpets on natural shores and artificial structures on Irish Sea coasts.

View Article and Find Full Text PDF

Artificial structures are widespread features of coastal marine environments. These structures, however, are poor surrogates of natural rocky shores, meaning they generally support depauperate assemblages with reduced population sizes. Little is known about sub-lethal effects of such structures, for example, in terms of demographic properties and reproductive potential that may affect the dynamics and long-term viability of populations.

View Article and Find Full Text PDF