Choices of where to look are informed by perceptual judgments, which locate objects of current value or interest within the visual scene. This perceptual-motor transform is partly implemented in the frontal eye field (FEF), where visually responsive neurons appear to select behaviorally relevant visual targets and, subsequently, saccade-related neurons select the movements required to look at them. Here, we use urgent decision-making tasks to show (1) that FEF motor activity can direct accurate, visually informed choices in the complete absence of prior target-distracter discrimination by FEF visual responses and (2) that such discrimination by FEF visual cells shows an all-or-none reliance on the presence of stimulus attributes strongly associated with saliency-driven attentional allocation.
View Article and Find Full Text PDFA key goal in the study of decision making is determining how neural networks involved in perception and motor planning interact to generate a given choice, but this is complicated due to the internal trade-off between speed and accuracy, which confounds their individual contributions. Urgent decisions, however, are special: they may range between random and fully informed, depending on the amount of processing time (or stimulus viewing time) available in each trial, but regardless, movement preparation always starts early on. As a consequence, under time pressure it is possible to produce a psychophysical curve that characterizes perceptual performance independently of reaction time, and this, in turn, makes it possible to pinpoint how perceptual information (which requires sensory input) modulates motor planning (which does not) to guide a choice.
View Article and Find Full Text PDF