Serotonin (5-HT) neurons contribute to respiratory chemoreception in adult mice, but it is unclear whether they play a similar role in neonatal mice. We studied breathing during development in Lmx1b mice, which lack 5-HT neurons. From postnatal days 1-7 (P1-P7), ventilation of Lmx1b mice breathing room air was 50% of WT mice (p<0.
View Article and Find Full Text PDFNicotine may link maternal cigarette smoking with respiratory dysfunctions in sudden infant death syndrome (SIDS). Prenatal-perinatal nicotine exposure blunts ventilatory responses to hypercapnia and reduces central respiratory chemoreception in mouse neonates at Postnatal Days 0 (P0) to P3. This suggests that raphe neurons, which are altered in SIDS and contribute to central respiratory chemoreception, may be affected by nicotine.
View Article and Find Full Text PDFConnexins (Cxs) and Pannexins (Panx) form hemichannels at the plasma membrane of animals. Despite their low open probability under physiological conditions, these hemichannels release signaling molecules (i.e.
View Article and Find Full Text PDFNicotine is a neuroteratogen and is the likely link between maternal cigarette smoking during pregnancy and sudden infant death syndrome (SIDS). Osmotic minipumps were implanted in 5-7 d CF1 pregnant mice to deliver nicotine bitartrate (60 mg Kg(-1) day(-1)) or saline (control) solutions for up to 28 d. Prenatal to early postnatal nicotine exposure did not modify the number of newborns per litter or their postnatal growth; however, nicotine-exposed neonates hypoventilated and had reduced responses to hypercarbia (inhalation of air enriched with 10% CO(2) for 20 min) and hypoxia (inhalation of 100% N(2) for 20 s) at postnatal days 0-3 (P0-P3).
View Article and Find Full Text PDFChemoreceptor (glomus) cells of the carotid body are synaptically connected to the sensory nerve endings of petrosal ganglion (PG) neurons. In response to natural stimuli, the glomus cells release transmitters, which acting on the nerve terminals of petrosal neurons increases the chemosensory afferent discharge. Among several transmitter molecules present in glomus cells, acetylcholine (ACh) and adenosine 5'-triphosphate (ATP) are considered to act as excitatory transmitter in this synapse.
View Article and Find Full Text PDFThe petrosal ganglion (PG) is entirely constituted by the perikarya of primary sensory neurons, part of which innervates the carotid body via the carotid sinus nerve (CSN). Application of acetylcholine (ACh) or nicotine (Nic) as well as adenosine 5'-triphosphate (ATP) to the PG in vitro increases the frequency of CSN discharges, an effect that is modified by the concomitant application of dopamine (DA). Since a population of PG neurons expresses tyrosine hydroxylase, and DA is released from the cat carotid body in response to electrical stimulation of C-fibers in the CSN, it is possible that DA may be released from the perikarya of PG neurons.
View Article and Find Full Text PDFThe petrosal ganglion (PG) provides sensory innervation to the carotid sinus and carotid body through the carotid (sinus) nerve (CN). Application of either acetylcholine (ACh) or adenosine 5'-triphosphate (ATP) to the PG superfused in vitro activates CN fibers. Dopamine (DA) modulates the effects of ACh.
View Article and Find Full Text PDF