Publications by authors named "Veronica Casanas-Sanchez"

The cerebellum is an essential component in the control of motor patterns. Despite dramatic alteration of basal ganglia morpho-functionality in Parkinson's disease (PD), cerebellar function appears to be unaffected by the disease. Only recently this brain structure has been proposed to play compensatory roles in PD-induced motor dysfunction, particularly during the initial asymptomatic stages of PD.

View Article and Find Full Text PDF

The aggregation of α-synuclein (α-syn) is a major factor behind the onset of Parkinson's disease (PD). Sublocalization of this protein may be relevant for the formation of multimeric α-syn oligomeric configurations, insoluble aggregates that form Lewy bodies in PD brains. Processing of this protein aggregation is regulated by associations with distinct lipid classes.

View Article and Find Full Text PDF

Ethanol is known to cause severe systemic damage often explained as secondary to oxidative stress. Brain is particularly vulnerable to ethanol-induced reactive oxygen species (ROS) because the high amounts of lipids, and because nerve cell membranes contain high amounts of peroxidable fatty acids. Usually these effects of ethanol are associated to high and/or chronic exposure to ethanol.

View Article and Find Full Text PDF

Current evidence suggests that lipid homeostasis in the hippocampus is affected by different genetic, dietary, and hormonal factors, and that its deregulation may be associated with the onset and progression of Alzheimer's disease (AD). However, the precise levels of influence of each of these factors and their potential interactions remain largely unknown, particularly during neurodegenerative processes. In the present study, we have performed multifactorial analyses of the combined effects of diets containing different doses of docosahexaenoic acid (DHA), estrogen status (ovariectomized animals receiving vehicle or 17β-estradiol), and genotype (wild-type or transgenic APP/PS1 mice) in hippocampal lipid profiles.

View Article and Find Full Text PDF

Docosahexaenoic acid (DHA, 22:6n-3) is a unique polyunsaturated fatty acid particularly abundant in nerve cell membrane phospholipids. DHA is a pleiotropic molecule that, not only modulates the physicochemical properties and architecture of neuronal plasma membrane, but it is also involved in multiple facets of neuronal biology, from regulation of synaptic function to neuroprotection and modulation of gene expression. As a highly unsaturated fatty acid due to the presence of six double bonds, DHA is susceptible for oxidation, especially in the highly pro-oxidant environment of brain parenchyma.

View Article and Find Full Text PDF

Docosahexaenoic acid (DHA, 22:6n-3) is a major constituent of nerve cell membrane phospholipids. Besides a role in membrane architecture, DHA is a pleiotropic molecule involved in multiple facets of neuronal biology and also in neuroprotection. We show here that supplementation with DHA (but not arachidonic acid) to mouse hippocampal HT22 cells modulates the expression of genes encoding for antioxidant proteins associated with thioredoxin/peroxiredoxin and glutathione/glutaredoxin systems.

View Article and Find Full Text PDF

Menadione sodium bisulphite (MSB) is a water-soluble derivative of vitamin K3, or menadione, and has been previously demonstrated to function as a plant defence activator against several pathogens in several plant species. However, there are no reports of the role of this vitamin in the induction of resistance in the plant model Arabidopsis thaliana. In the current study, we demonstrate that MSB induces resistance by priming in Arabidopsis against the virulent strain Pseudomonas syringae pv.

View Article and Find Full Text PDF