Dental restoration materials are susceptible to bacterial biofilm formation, which damages the restorations and causes oral health problems. Therefore, to overcome this, silver nanoparticles (AgNPs) are studied widely due to their antimicrobial, anti-inflammatory and healing properties. The purpose of this study was to develop a strategy for incorporating AgNPs onto the surface of bisacrylic resin (Bis) to evaluate its antibiofilm effects using and .
View Article and Find Full Text PDFSutures are a crucial component of surgical procedures, serving to close and stabilize wound margins to promote healing. However, microbial contamination of sutures can increase the risk of surgical site infections (SSI) due to colonization by pathogens. This study aimed to tackle SSI by synthesizing positively charged silver nanoparticles (P-AgNPs) and using them to produce antimicrobial sutures.
View Article and Find Full Text PDFBackground: Acrylic resins used in dental and biomedical applications do not have antimicrobial properties, their surface is susceptible to colonization of microorganisms.
Objective: The aim of this study was to evaluate the antibiofilm properties of silver nanoparticles (AgNPs) deposited in a polymethyl methacrylate (PMMA) surface against a Staphylococcus aureus biofilm.
Methods: The PMMA was impregnated with AgNPs by using the in-situ polymerization method.