The combination of a sensitive and specific magnetoresistive sensing device with an easy DNA extraction method and a rapid isothermal amplification is presented here targeting the on-site detection of , a potato endoparasitic nematode. FTA-cards were used for DNA extraction, LAMP was the method developed for DNA amplification and a nanoparticle functionalized magnetic-biosensor was used for the detection. The combinatorial effect of these three emerging technologies has the capacity to detect with a detection limit of one juvenile, even when mixed with other related species.
View Article and Find Full Text PDFThe potato cyst nematode (PCN), Globodera pallida, has acquired significant importance throughout Europe due to its widespread prevalence and negative effects on potato production. Thus, rapid and reliable diagnosis of PCN is critical during surveillance programs and for the implementation of control measures. The development of innovative technologies to overcome the limitations of current methodologies in achieving early detection is needed.
View Article and Find Full Text PDFMagnetoresistive (MR) biosensors combine distinctive features such as small size, low cost, good sensitivity, and propensity to be arrayed to perform multiplexed analysis. Magnetic nanoparticles (MNPs) are the ideal target for this platform, especially if modified not only to overcome their intrinsic tendency to aggregate and lack of stability but also to realize an interacting surface suitable for biofunctionalization without strongly losing their magnetic response. Here, we describe an MR biosensor in which commercial MNP clusters were coated with gold nanoparticles (AuNPs) and used to detect human IgG in water using an MR biochip that comprises six sensing regions, each one containing five U-shaped spin valve sensors.
View Article and Find Full Text PDFThe recent worldwide spread of viral infections has highlighted the need for accurate, fast, and inexpensive disease diagnosis and monitorization methods. Current diagnostics tend to focus either on molecular or serological testing. In this work we propose a dual detection assay approach for viral diseases, where both serological and molecular assays are combined in a single analysis performed on a magnetoresistive system.
View Article and Find Full Text PDFThe abundance of cellular fibronectin (c-Fn) for ischemic stroke patients and the narrow time-window (<4.5 h) for the decision to administer the thrombolytic treatment with recombinant tissue plasminogen activator (rtPA) are challenging for the development of a point-of-care (PoC) diagnostic platform. We report a case of stratification of ischemic stroke patients based on a magnetoresistive biosensor platform that quantifies the c-Fn levels in a small volume of serum, within the clinically relevant time-window.
View Article and Find Full Text PDFThe accurate diagnosis of bacterial infections is of critical importance for effective treatment decisions. Due to the multietiologic nature of most infectious diseases, multiplex assays are essential for diagnostics. However, multiplexability in nucleic acid amplification-based methods commonly resorts to multiple primers and/or multiple reaction chambers, which increases analysis cost and complexity.
View Article and Find Full Text PDFBovine mastitis is an inflammation of the mammary gland caused by a multitude of pathogens with devastating consequences for the dairy industry. Global annual losses are estimated to be around €30 bn and are caused by significant milk losses, poor milk quality, culling of chronically infected animals, and occasional deaths. Moreover, mastitis management routinely implies the administration of antibiotics to treat and prevent the disease which poses serious risks regarding the emergence of antibiotic resistance.
View Article and Find Full Text PDFThe growing need for biological information at the single cell level has driven the development of improved cytometry technologies. Flow cytometry is a particularly powerful method that has evolved over the past few decades. Flow cytometers have become essential instruments in biomedical research and routine clinical tests for disease diagnosis, prognosis, and treatment monitoring.
View Article and Find Full Text PDFThe use of targeted nanoparticles for magnetic hyperthermia (MHT) increases MHT selectivity, but often at the expense of its effectiveness. Consequently, targeted MHT is typically used in combination with other treatment modalities. This work describes an implementation of a highly effective monotherapeutic in vitro MHT treatment based on two populations of magnetic particles.
View Article and Find Full Text PDFThis paper presents a prototype of a platform for biomolecular recognition detection. The system is based on a magnetoresistive biochip that performs biorecognition assays by detecting magnetically tagged targets. All the electronic circuitry for addressing, driving and reading out signals from spin-valve or magnetic tunnel junctions sensors is implemented using off-the-shelf components.
View Article and Find Full Text PDFPeroxidases have conquered a prominent position in biotechnology and associated research areas (enzymology, biochemistry, medicine, genetics, physiology, histo- and cytochemistry). They are one of the most extensively studied groups of enzymes and the literature is rich in research papers dating back from the 19th century. Nevertheless, peroxidases continue to be widely studied, with more than 2000 articles already published in 2002 (according to the Institute for Scientific Information).
View Article and Find Full Text PDF