Publications by authors named "Veronica A Trivillin"

Background: Boron neutron capture therapy (BNCT) is a tumor-selective particle radiotherapy that combines preferential boron accumulation in tumors and neutron irradiation. Based on previous studies in tumor-bearing mice, this study evaluated the biodistribution of the sodium salt of cobaltabis(dicarbollide) (Na[3,3'-Co(CBH)], abbreviated as Na[-COSAN]) in the hamster cheek pouch oral cancer model and the Na[-COSAN]/BNCT therapeutic effect on tumors and induced radiotoxicity. The synthesis and comprehensive characterization of B-enriched trimethylammonium salt of -[7,8-CBH]-carborane, along with the cesium and sodium salts of [-COSAN] cobaltabis(dicarbollide) are reported here for the first time.

View Article and Find Full Text PDF

The assessment of boron microdistribution is essential to evaluate the suitability of boron neutron capture therapy (BNCT) in different biological models. In our laboratory, we have reported a methodology to produce cell imprints on polycarbonate through UV-C sensitization. The aim of this work is to extend the technique to tissue samples in order to enhance spatial resolution.

View Article and Find Full Text PDF

Boron neutron capture therapy (BNCT) is based on the preferential uptake of B compounds by tumors, followed by neutron irradiation. The aim of this study was to assess, in an ectopic colon cancer model, the therapeutic efficacy, radiotoxicity, abscopal effect and systemic immune response associated with (BPA/Borophenylalanine+GB-10/Decahydrodecaborate)-BNCT (Comb-BNCT) alone or in combination with Oligo-Fucoidan (O-Fuco) or Glutamine (GLN), compared to the "standard" BPA-BNCT protocol usually employed in clinical trials. All treatments were carried out at the RA-3 nuclear reactor.

View Article and Find Full Text PDF

Boron neutron capture therapy (BNCT) combines preferential tumor uptake of B compounds and neutron irradiation. Electroporation induces an increase in the permeability of the cell membrane. We previously demonstrated the optimization of boron biodistribution and microdistribution employing electroporation (EP) and decahydrodecaborate (GB-10) as the boron carrier in a hamster cheek pouch oral cancer model.

View Article and Find Full Text PDF

Background: BNCT (Boron Neutron Capture Therapy) is a tumor-selective particle radiotherapy that combines preferential boron accumulation in tumors and neutron irradiation. Although -boronophenylalanine (BPA) has been clinically used, new boron compounds are needed for the advancement of BNCT. Based on previous studies in colon tumor-bearing mice, in this study, we evaluated MID:BSA (maleimide-functionalized -dodecaborate conjugated to bovine serum albumin) biodistribution and MID:BSA/BNCT therapeutic effect on tumors and associated radiotoxicity in the hamster cheek pouch oral cancer model.

View Article and Find Full Text PDF

Objective: The aim of the present study was to evaluate the local and regional therapeutic efficacy and abscopal effect of BNCT mediated by boronophenyl-alanine, combined with Bacillus Calmette-Guerin (BCG) as an immunotherapy agent in this model.

Methods: The local effect of treatment was evaluated in terms of tumor response in the irradiated tumor-bearing right hind flank. Metastatic spread to tumor-draining lymph nodes was analyzed as an indicator of regional effect.

View Article and Find Full Text PDF

Translational Boron Neutron Capture Therapy (BNCT) studies performed by our group and clinical BNCT studies worldwide have shown the therapeutic efficacy of BNCT for head and neck cancer. The present BNCT studies in veterinary patients with head and neck cancer were performed to optimize the therapeutic efficacy of BNCT, contribute towards exploring the role of BNCT in veterinary medicine, put in place technical aspects for an upcoming clinical trial of BNCT for head and neck cancer at the RA-6 Nuclear Reactor, and assess the feasibility of employing the existing B2 beam to treat large, deep-seated tumors. Five dogs with head and neck cancer with no other therapeutic option were treated with two applications of BNCT mediated by boronophenyl-alanine (BPA) separated by 3-5 weeks.

View Article and Find Full Text PDF

In Argentina, a multi-institutional project has been established to assess the feasibility of applying BNCT ex-situ to the treatment of patients with multiple metastases in both lungs. Within this context, this work aims at applying the neutron autoradiography technique to study boron microdistribution in the lung. A comprehensive analysis of the different aspects for the generation of autoradiographic images of both normal and metastatic BDIX rat lungs was achieved.

View Article and Find Full Text PDF

Objective(s): The hamster carcinogenesis model recapitulates oral oncogenesis. Dimethylbenz[a]anthracene (DMBA) cancerization induces early severe mucositis, affecting animal's welfare and causing tissue loss and pouch shortening. "Short" pouches cannot be everted for local irradiation for boron neutron capture therapy (BNCT).

View Article and Find Full Text PDF

Boron neutron capture therapy (BNCT) is a targeted therapy, which consists of preferential accumulation of boron carriers in tumor followed by neutron irradiation. Each oral cancer patient has different risks of developing one or more carcinomas and/or oral mucositis induced after treatment. Our group proposed the hamster oral cancer model to study the efficacy of BNCT and associated mucositis.

View Article and Find Full Text PDF

Boron neutron capture therapy (BNCT) is a promising cancer binary therapy modality that utilizes the nuclear capture reaction of thermal neutrons by boron-10 resulting in a localized release of high- and low-linear energy transfer (LET) radiation. Electrochemotherapy (ECT) is based on electroporation (EP) that induces opening of pores in cell membranes, allowing the entry of compounds. Because EP is applied locally to a tumor, the compound is incorporated preferentially by tumor cells.

View Article and Find Full Text PDF

Purpose: Boron neutron capture therapy (BNCT) combines selective accumulation of B carriers in tumor tissue with subsequent neutron irradiation. BNCT has been proposed for the treatment of multiple, non-resectable, diffuse tumors in lung. The aim of the present study was to evaluate the therapeutic efficacy and toxicity of BNCT in an experimental model of lung metastases of colon carcinoma in BDIX rats and perform complementary survival studies.

View Article and Find Full Text PDF

Boron neutron capture therapy (BNCT) is based on selective accumulation of B-10 carriers in tumor followed by neutron irradiation. We demonstrated, in 2001, the therapeutic effect of BNCT mediated by BPA (boronophenylalanine) in the hamster cheek pouch model of oral cancer, at the RA-6 nuclear reactor. Between 2007 and 2011, the RA-6 was upgraded, leading to an improvement in the performance of the BNCT beam (B2 configuration).

View Article and Find Full Text PDF

The aim of the present study was to evaluate, for the first time, the abscopal effect of boron neutron capture therapy (BNCT). Twenty-six BDIX rats were inoculated subcutaneously with 1 × 10 DHD/K12/TRb syngeneic colon cancer cells in the right hind flank. Three weeks post-inoculation, the right leg of 12 rats bearing the tumor nodule was treated with BPA-BNCT (BPA-Boronophenylalanine) at the RA-3 nuclear reactor located in Buenos Aires, Argentina, at an absorbed dose of 7.

View Article and Find Full Text PDF

Rheumatoid arthritis is a chronic autoimmune pathology characterized by the proliferation and inflammation of the synovium. Boron neutron capture synovectomy (BNCS), a binary treatment modality that combines the preferential incorporation of boron carriers to target tissue and neutron irradiation, was proposed to treat the pathological synovium in arthritis. In a previous biodistribution study, we showed the incorporation of therapeutically useful boron concentrations to the pathological synovium in a model of antigen-induced arthritis (AIA) in rabbits, employing two boron compounds approved for their use in humans, i.

View Article and Find Full Text PDF

Aim: To evaluate vascular morphology and density, angiogenic switch activation, vascular endothelial growth factor (VEGF) expression, and endothelial cell (EC) proliferation in the hamster cheek pouch (HCP) model of oral cancer.

Materials And Methods: Immunohistochemical detection of factor VIII, 5'-Bromo-2'-Deoxyuridine (BrdU) and VEGF was performed in pre-malignant and tumoral tissues.

Results: Activation of angiogenesis was detected adjacent to epithelial dysplasia.

View Article and Find Full Text PDF

The application of boron neutron capture therapy (BNCT) mediated by liposomes containing (10)B-enriched polyhedral borane and carborane derivatives for the treatment of head and neck cancer in the hamster cheek pouch oral cancer model is presented. These liposomes are composed of an equimolar ratio of cholesterol and 1,2-distearoyl-sn-glycero-3-phosphocholine, incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] (MAC) in the bilayer membrane while encapsulating the hydrophilic species Na3[ae-B20H17NH3] (TAC) in the aqueous core. Unilamellar liposomes with a mean diameter of 83 nm were administered i.

View Article and Find Full Text PDF

Boron neutron capture synovectomy (BNCS) is explored for the treatment of rheumatoid arthritis (RA). The aim of the present study was to perform boron biodistribution studies in a model of antigen-induced arthritis (AIA) in female New Zealand rabbits, with the boron carriers boronophenylalanine (BPA) and sodium decahydrodecaborate (GB-10) to assess the potential feasibility of BNCS for RA. Rabbits in chronic phase of AIA were used for biodistribution studies employing the following protocols: intra-articular (ia) (a) BPA-f 0.

View Article and Find Full Text PDF

Background: We previously demonstrated the therapeutic success of sequential boron neutron capture therapy (Seq-BNCT) in the hamster cheek pouch oral cancer model. It consists of BPA-BNCT followed by GB-10-BNCT 24 or 48 hours later. Additionally, we proved that tumor blood vessel normalization with thalidomide prior to BPA-BNCT improves tumor control.

View Article and Find Full Text PDF

Sodium mercaptoundecahydro-closo-dodecaborate (BSH) is being investigated clinically for BNCT. We examined the biodistribution of BSH and BPA administered jointly in different proportions in the hamster cheek pouch oral cancer model. The 3 assayed protocols were non-toxic, and showed preferential tumor boron uptake versus precancerous and normal tissue and therapeutic tumor boron concentration values (70-85ppm).

View Article and Find Full Text PDF

Boron neutron capture therapy (BNCT) was proposed for untreatable colorectal liver metastases. Employing an experimental model of liver metastases in rats, we recently demonstrated that BNCT mediated by boronophenylalanine (BPA-BNCT) at 13 Gy prescribed to tumor is therapeutically useful at 3-week follow-up. The aim of the present study was to evaluate dose–response at 5-week follow-up, based on retrospective dose assessment in individual rats.

View Article and Find Full Text PDF

Boron neutron capture therapy (BNCT) is based on selective accumulation of ¹⁰B carriers in tumor followed by neutron irradiation. We previously proved the therapeutic success of BNCT mediated by the boron compounds boronophenylalanine and sodium decahydrodecaborate (GB-10) in the hamster cheek pouch oral cancer model. Based on the clinical relevance of the boron carrier sodium borocaptate (BSH) and the knowledge that the most effective way to optimize BNCT is to improve tumor boron targeting, the specific aim of this study was to perform biodistribution studies of BSH in the hamster cheek pouch oral cancer model and evaluate the feasibility of BNCT mediated by BSH at nuclear reactor RA-3.

View Article and Find Full Text PDF

Background: Normalization of tumor blood vessels improves drug and oxygen delivery to cancer cells. The aim of this study was to develop a technique to normalize blood vessels in the hamster cheek pouch model of oral cancer.

Materials And Methods: Tumor-bearing hamsters were treated with thalidomide and were compared with controls.

View Article and Find Full Text PDF

Boron neutron capture therapy (BNCT) was proposed for untreatable colorectal liver metastases. The present study evaluates tumor control and potential radiotoxicity of BNCT in an experimental model of liver metastasis. BDIX rats were inoculated with syngeneic colon cancer cells DHD/K12/TRb.

View Article and Find Full Text PDF