Publications by authors named "Veronica A Raker"

We report that the 3' splice site associated with the alternatively spliced exon 6 of the Fas receptor CD95 displays strict sequence requirements and that a mutation that disrupts this particular sequence arrangement leads to constitutive exon 6 skipping in a patient suffering from autoimmune lymphoproliferative syndrome (ALPS). Specifically, we find an absolute requirement for RCAG/G at the 3' splice site (where R represents purine, and / indicates the intron/exon boundary) and the balance between exon inclusion and skipping is exquisitely sensitive to single nucleotide variations in the uridine content of the upstream polypyrimidine (Py)-tract. Biochemical experiments revealed that the ALPS patient mutation reduces U2 snRNP recruitment to the 3' splice site region and that this effect cannot be explained by decreased interaction with the U2 snRNP Auxiliary Factor U2AF, whose 65- and 35-kDa subunits recognize the Py-tract and 3' splice site AG, respectively.

View Article and Find Full Text PDF

Accurate and efficient recognition of splice sites during pre-mRNA splicing is essential for proper transcriptome expression. Splice site usage can be modulated by secondary structures, but it is unclear if this type of modulation is commonly used or occurs to a significant degree with secondary structures forming over long distances. Using phlyogenetic comparisons of intronic sequences among 12 Drosophila genomes, we elucidated a group of 202 highly conserved pairs of sequences, each at least nine nucleotides long, capable of forming stable stem structures.

View Article and Find Full Text PDF

PML-RARalpha induces a block of hematopoietic differentiation and acute promyelocytic leukemia. This block is based on its capacity to inactivate target genes by recruiting histone deacetylase (HDAC) and DNA methyltransferase activities. Here we report that MBD1, a member of a conserved family of proteins able to bind methylated DNA, cooperates with PML-RARalpha in transcriptional repression and cellular transformation.

View Article and Find Full Text PDF

P66Shc regulates life span in mammals and is a critical component of the apoptotic response to oxidative stress. It functions as a downstream target of the tumor suppressor p53 and is indispensable for the ability of oxidative stress-activated p53 to induce apoptosis. The molecular mechanisms underlying the apoptogenic effect of p66Shc are unknown.

View Article and Find Full Text PDF

The human Src homology and collagen (Shc) gene encodes three protein isoforms of 46, 52, and 66 kDa that belong to a family of molecular adapters involved in several signal transduction pathways. Recently, the 66-kDa isoform has been shown to play a central role in controlling reactive oxygen species metabolism and life span in mammals. Despite the large amount of information available on the biology and biochemistry of Shc proteins, very little is known regarding the regulation of their subcellular localization.

View Article and Find Full Text PDF

Correlative evidence links stress, accumulation of oxidative cellular damage and ageing in lower organisms and in mammals. We investigated their mechanistic connections in p66Shc knockout mice, which are characterized by increased resistance to oxidative stress and extended life span. We report that p66Shc acts as a downstream target of the tumour suppressor p53 and is indispensable for the ability of stress-activated p53 to induce elevation of intracellular oxidants, cytochrome c release and apoptosis.

View Article and Find Full Text PDF

DNA methylation of tumor suppressor genes is a frequent mechanism of transcriptional silencing in cancer. The molecular mechanisms underlying the specificity of methylation are unknown. We report here that the leukemia-promoting PML-RAR fusion protein induces gene hypermethylation and silencing by recruiting DNA methyltransferases to target promoters and that hypermethylation contributes to its leukemogenic potential.

View Article and Find Full Text PDF