Publications by authors named "Vernon M Camp"

A positron emission tomography (PET) tracer composed of (18)F-labeled maltohexaose (MH(18)F) can image bacteria in vivo with a sensitivity and specificity that are orders of magnitude higher than those of fluorodeoxyglucose ((18)FDG). MH(18)F can detect early-stage infections composed of as few as 10(5) E. coli colony-forming units (CFUs), and can identify drug resistance in bacteria in vivo.

View Article and Find Full Text PDF

Introduction: Fluorine-18 labeled 2β-carbomethoxy-3β-(4-chlorophenyl)-8-(2-fluoroethyl)nortropane ([(18)F]FECNT) binds reversibly to the dopamine transporter (DAT) with high selectivity. [(18)F]FECNT has been used extensively in the quantification of DAT occupancy in non-human primate brain and can distinguish between Parkinson's and healthy controls in humans. The purpose of this work was to develop a compartment model to characterize the kinetics of [(18)F]FECNT for quantification of DAT density in healthy human brain.

View Article and Find Full Text PDF

Background: Human pituitary adenomas express folate receptors (FR); therefore, we hypothesized that parathyroid (PT) tumors also might express FR, whereas normal human thyroids might not. The purpose of our study was to characterize the functionality of FRs on human PT tumors, with the goal of developing an imaging tool that would concentrate in PT more than in the thyroid.

Methods: Human PTs and thyroids were evaluated for FR expression by immunohistochemistry.

View Article and Find Full Text PDF

Introduction: The enantiomerically enriched (ee=90%, enantiomer 1) synthetic amino acid (R,S)-anti-1-amino-2-fluorocyclopentyl-1-carboxylic acid (anti-2-[(18)F]FACPC-1) accumulates in malignant cells by elevated transport through the sodium-independent system-L (leucine preferring) amino acid transporter. The purpose of this study was to evaluate in vivo uptake and single-dose toxicity of anti-2-[(18)F]FACPC-1 in animals as well as the individual organ and whole-body dose in humans.

Methods: A DU145 xenograft rodent model was used to measure anti-2-[(18)F]FACPC-1 uptake at 15, 30 and 60 min post-injection.

View Article and Find Full Text PDF

Purpose: Anti-1-amino-2-[(18)F]fluorocyclopentane-1-carboxylic acid (anti-2-[(18)F]FACPC) is an unnatural alicyclic amino acid radiotracer with high uptake in the DU-145 prostate cancer cell line in vitro. Our goal was to determine if anti-2-[(18)F]FACPC is useful in the detection of prostate carcinoma.

Procedures: Five patients with elevated PSA (1.

View Article and Find Full Text PDF

(R,S)-anti-1-amino-2-fluorocyclopentyl-1-carboxylic acid (2-FACPC, 4b) was radiolabeled in 39% yield starting from cyclic sulfamidate 12. The 9L gliosarcoma cells assays showed that 4b is mainly a substrate for the L-type amino acid transport with some affinity to the A-type. In rats bearing 9L gliosarcoma tumors, 4b displayed high tumor to brain ratio (10:1) at 120 min after injection.

View Article and Find Full Text PDF

A new [(18)F] labeled amino acid anti-1-amino-2-[(18)F]fluoro-cyclobutyl-1-carboxylic acid 9 (anti-2-[(18)F]FACBC) was synthesized in 30% decay-corrected yield with high radiochemical purity over 99%. The cyclic sulfamidate precursor was very stable and highly reactive towards nucleophilic radiofluorination. Cell uptake assays with rat 9L gliosarcoma cells showed that [(18)F]9 was transported into tumor cells via multiple amino acid transport systems, including L and A systems.

View Article and Find Full Text PDF

The non-natural amino acids (R)- and (S)-2-amino-3-fluoro-2-methylpropanoic acid 5 and (R)- and (S)-3-fluoro-2-methyl-2-N-(methylamino)propanoic acid 8 were synthesized in shorter reaction sequences than in the original report starting from enantiomerically pure (S)- and (R)-alpha-methyl-serine, respectively. The reaction sequence provided the cyclic sulfamidate precursors for radiosynthesis of (R)- and (S)-[(18)F]5 and (R)- and (S)-[(18)F]8 in fewer steps than in the original report. (R)- and (S)-[(18)F]5 and(R)- and (S)-[(18)F]8 were synthesized by no-carrier-added nucleophilic [(18)F]fluorination in 52-66% decay-corrected yields with radiochemical purity over 99%.

View Article and Find Full Text PDF

Amino acid syn-1-amino-3-fluoro-cyclobutyl-1-carboxylic acid (syn-FACBC) 12, the isomer of anti-FACBC, has been selectively synthesized and [(18)F] radiofluorinated in 52% decay-corrected yield using no-carrier-added [(18)F]fluoride. The key step in the synthesis of the desired isomer involved stereoselective reduction using lithium alkylborohydride/zinc chloride, which improved the ratio of anti-alcohol to syn-alcohol from 17:83 to 97:3. syn-FACBC 12 entered rat 9L gliosarcoma cells primarily via L-type amino acid transport in vitro with high uptake of 16% injected dose per 5 x 10(5) cells.

View Article and Find Full Text PDF

The meta-vinylhalide fluoroalkyl ester nortropanes 1-4 were synthesized as ligands of the serotonin transporter (SERT) for use as positron emission tomography (PET) imaging agents. In vitro competition binding assays demonstrated that 1-4 have a high affinity for the SERT (K(i) values = 0.3-0.

View Article and Find Full Text PDF

syn- and anti-1-amino-3-[2-iodoethenyl]-cyclobutane-1-carboxylic acid (syn-, anti-IVACBC 16, 17) and their analogue 1-amino-3-iodomethylene-cyclobutane-1-carboxylic acid (gem-IVACBC 18) were synthesized and radioiodoinated with [(123)I] in 34-43% delay-corrected yield. All these amino acids entered 9L gliosarcoma cells primarily via L-type transport in vitro with high uptake of 8-10% ID/1 x 10(6) cells. Biodistribution studies of [(123)I]16, 17 and 18 in rats with 9L gliosarcoma brain tumors demonstrated high tumor to brain ratios (4.

View Article and Find Full Text PDF

Both enantiomers of 2-amino-2-methyl-4-iodo-3-(E)-butenoic acid (IVAIB, 5) were radioiodoinated in 65-72% yield. (S)-IVAIB entered 9L gliosarcoma cells primarily via A-type transport in vitro with higher uptake than (R)-IVAIB. Biodistribution studies in rats with 9L gliosarcoma brain tumors demonstrated higher tumor to brain ratios with (S)-IVAIB (75:1 at 1 h) than (R)-IVAIB (7.

View Article and Find Full Text PDF

Unlabelled: The synthetic leucine amino acid analog anti-1-amino-3-(18)F-fluorocyclobutane-1-carboxylic acid (anti-(18)F-FACBC) is a recently developed ligand that permits the evaluation of the L-amino acid transport system. This study evaluated the whole-body radiation burden of anti-(18)F-FACBC in humans.

Methods: Serial whole-body PET/CT scans of 6 healthy volunteers (3 male and 3 female) were acquired for 2 h after a bolus injection of anti-(18)F-FACBC (366 +/- 51 MBq).

View Article and Find Full Text PDF

A series of 2beta,3alpha-(substituted phenyl)nortropanes was synthesized and evaluated in vitro for human monoamine transporters. All compounds studied in this series exhibited nanomolar potency for the norepinephrine transporter (NET). Radiolabeling and nonhuman primate microPET brain imaging studies were performed with the most promising compound, [(11)C]1, to determine its utility as a NET imaging agent.

View Article and Find Full Text PDF

Unlabelled: Carbon-11-labeled N,N-dimethyl-2-(2'-amino-4'-hydroxymethylphenylthio)benzylamine (HOMADAM) was synthesized as a new serotonin transporter (SERT) imaging agent.

Methods: Carbon-11 was introduced into HOMADAM by preparation of N-methyl-2-(2'-amino-4'-hydroxymethylphenylthio)benzylamine followed by alkylation with carbon-11 iodomethane. Binding affinities of HOMADAM and the radiolabeling substrate, N-methyl-2-(2'-amino-4'-hydroxymethylphenylthio)benzylamine, were determined in cDNA transfected cells expressing human SERT, dopamine transporters (DAT) and norepinephrine transporters NET using [3H]citalopram, [(125)I]RTI-55 and [3H]nisoxetine, respectively.

View Article and Find Full Text PDF

[11C]N,N-Dimethyl-2-(2'-amino-4'-ethylphenylthio)benzylamine ([11C]EADAM) was synthesized in the development of a serotonin transporter (SERT) imaging ligand for positron emission tomography (PET). The methods of ligand synthesis, results of in vitro characterization, 11C labeling and in vivo micro-PET imaging studies of [11C]EADAM in cynomolgus monkey brain are described. 11C was introduced into N,N-dimethyl-2-(2'-amino-4'-ethylphenylthio)benzylamine (5) by alkylation of N-methyl-2-(2'-amino-4'-ethylphenylthio)benzylamine (10) in 32% radiochemical yield (end of bombardment [EOB], decay-corrected from [11C]methyl iodide).

View Article and Find Full Text PDF

PET and SPECT ligands for the norepinephrine transporter (NET) will be important tools for studying the physiology, pathophysiology and pharmacology of the CNS noradrenergic system in vivo. A series of candidate NET ligands were synthesized and characterized in terms of their affinity for human monoamine transporters. The two most promising compounds, talopram and talsupram, were radiolabeled with carbon-11 and evaluated through biodistribution studies in rats and PET imaging studies in a rhesus monkey.

View Article and Find Full Text PDF

2beta-Carbomethoxy-3beta-[4'-((Z)-2-iodoethenyl)phenyl]tropane (ZIET) and 2beta-carbomethoxy-3beta-[4'-((Z)-2-bromoethenyl)phenyl]tropane (ZBrET) were synthesized as well as their nortropane congeners ZIENT and ZBrENT. Binding affinities of these compounds were determined in cells transfected to express human SERT, DAT, and NET using [3H]citalopram, [125I]RTI-55, and [3H]nisoxetine, respectively. Both ZIET and ZBrET displayed high affinity for the SERT (Ki = 0.

View Article and Find Full Text PDF

Radiolabeled amino acids represent a promising class of tumor imaging agents, and the determination of the optimal characteristics of these tracers remains an area of active investigation. A new (18)F-labeled branched amino acid, 2-amino-4-[(18)F]fluoro-2-methylbutanoic acid (FAMB), has been prepared in 36% decay-corrected yield using no-carrier-added [(18)F]fluoride. In vitro uptake assays with rat 9L gliosarcoma cells suggest that [(18)F]FAMB was transported primarily via the L type amino acid transport system.

View Article and Find Full Text PDF

2beta-Carbomethoxy-3beta-(4'-((Z)-2-iodoethenyl)phenyl)nortropane (ZIENT) (6) and 2beta-carbomethoxy-3beta-(4'-((E)-2-iodoethenyl)phenyl)nortropane (EIENT) (10) were prepared and evaluated in vitro and in vivo for serotonin transporter (SERT) selectivity and specificity. High specific activity [(123)I]ZIENT and [(123)I]EIENT were synthesized in 45% (n = 5) and 42% (n = 4) radiochemical yield (decay-corrected to end of bombardment (EOB)), respectively, by preparation of the precursor carbomethoxy-3beta-(4'-((Z)-2-trimethylstannylethenyl)phenyl)nortropane (7) and 2beta-carbomethoxy-3beta-(4'-((E)-2-tributylstannylethenyl)phenyl)nortropane (9), respectively, followed by treatment with no carrier-added sodium [(123)I]iodide and hydrogen peroxide in ethanolic HCl. Competition binding in cells stably expressing the transfected human SERT, dopamine transporter (DAT), and norepinephrine transporter (NET) using [(3)H]citalopram, [(3)H]WIN 35,428, and [(3)H]nisoxetine, respectively, demonstrated the following order of SERT affinity (K(i) in nM): ZIENT (0.

View Article and Find Full Text PDF

syn- and anti-1-amino-3-[18F]fluoromethyl-cyclobutane-1-carboxylic acid (FMACBC, 16 and 17), analogues of anti-1-amino-3-[18F]fluorocyclobutyl-1-carboxylic acid (FACBC), were prepared to evaluate the contributions of C-3 substitution and configuration on the uptake of these radiolabeled amino acids in a rodent model of brain tumors. Radiofluorinated targets [18F]16 and [18F]17 were prepared by no-carrier-added radiofluorination from their corresponding methanesulfonyl esters 12 and 13, respectively, with decay-corrected radiochemical yields of 30% for [18F]16 and 20% for [18F]17. In amino acid transport assays performed in vitro using 9L gliosarcoma cells, both [18F]16 and [18F]17 were substrates for L type amino acid transport, while [18F]17 but not [18F]16 was a substrate for A type transport.

View Article and Find Full Text PDF

Novel radiopharmaceuticals, including amino acids, that target neoplasms through their altered metabolic states have shown promising results in preclinical and clinical studies. Two fluorinated analogues of alpha-aminoisobutyric acid, 2-amino-3-fluoro-2-methylpropanoic acid (FAMP) and 3-fluoro-2-methyl-2-(methylamino)propanoic acid (N-MeFAMP), have been radiolabeled with fluorine-18, characterized in amino acid uptake assays, and evaluated in vivo in normal rats and a rodent tumor model. The key steps in the syntheses of both radiotracers involved the preparation of cyclic sulfamidate precursors.

View Article and Find Full Text PDF