Publications by authors named "Vernon E Walker"

Mutations in T lymphocytes (T-cells) are informative quantitative markers for environmental mutagen exposures, but risk extrapolations from rodent models to humans also require an understanding of how T-cell development and proliferation kinetics impact mutagenic outcomes. Rodent studies have shown that patterns in chemical-induced mutations in the hypoxanthine-guanine phosphoribosyltransferase (Hprt) gene of T-cells differ between lymphoid organs. The current work was performed to obtain knowledge of the relationships between maturation events during T-cell development and changes in chemical-induced mutant frequencies over time in differing immune compartments of a mouse model.

View Article and Find Full Text PDF

The lack of anticancer agents that overcome innate/acquired drug resistance is the single biggest barrier to achieving a durable complete response to cancer therapy. To address this issue, a new drug family was developed for intracellular delivery of the bioactive aminothiol WR1065 by conjugating it to discrete thiol-PEG polymers: 4-star-PEG-S-S-WR1065 (4SP65) delivers four WR1065s/molecule and m-PEG-S-S-WR1065 (1LP65) delivers one. Infrequently, WR1065 has exhibited anticancer effects when delivered via the FDA-approved cytoprotectant amifostine, which provides one WR1065/molecule extracellularly.

View Article and Find Full Text PDF

We previously described flow cytometry-based methods for scoring the incidence of micronucleated reticulocytes (MN-RET) and PIG-A mutant phenotype reticulocytes (MUT RET) in rodent and human blood samples. The current report describes important methodological improvements for human blood analyses, including immunomagnetic enrichment of CD71-positive reticulocytes prior to MN-RET scoring, and procedures for storing frozen blood for later PIG-A analysis. Technical replicate variability in MN-RET and MUT RET frequencies based on blood specimens from 14 subjects, intra-subject variability based on serial blood draws from 6 subjects, and inter-subject variation based on up to 344 subjects age 0 to 73 years were quantified.

View Article and Find Full Text PDF

Acrylonitrile (ACN), which is a widely used industrial chemical, induces cancers in the mouse via unresolved mechanisms. For this report, complementary and previously described methods were used to assess in vivo genotoxicity and/or mutagenicity of ACN in several mouse models, including (i) female mice devoid of cytochrome P450 2E1 (CYP2E1), which yields the epoxide intermediate cyanoethylene oxide (CEO), (ii) male transgenic mice, and (iii) female (wild-type) B6C3F1 mice. Exposures of wild-type mice and CYP2E1-null mice to ACN at 0, 2.

View Article and Find Full Text PDF

Acrylonitrile (ACN), which is a widely used industrial chemical, induces cancers in multiple organs/tissues of rats by unresolved mechanisms. For this report, evidence for ACN-induced direct/indirect DNA damage and mutagenesis was investigated by assessing the ability of ACN, or its reactive metabolite, 2-cyanoethylene oxide (CEO), to bind to DNA in vitro, to form select DNA adducts [N7-(2'-oxoethyl)guanine, ,3-ethenoguanine, 1,-ethenodeoxyadenosine, and 3,-ethenodeoxycytidine] in vitro and/or in vivo, and to perturb the frequency and spectra of mutations in the hypoxanthine-guanine phosphoribosyltransferase () gene in rats exposed to ACN in drinking water. Adducts and frequencies and spectra of mutations were analyzed using published methods.

View Article and Find Full Text PDF

Epidemiological studies of 1,3-butadiene (BD) exposures have reported a possible association with chronic myelogenous leukemia (CML), which is defined by the presence of the t(9;22) translocation (Philadelphia chromosome) creating an oncogenic BCR-ABL fusion gene. Butadiene diepoxide (DEB), the most mutagenic of three epoxides resulting from BD, forms DNA-DNA crosslink adducts that can lead to DNA double-strand breaks (DSBs). Thus, a study was designed to determine if (±)-DEB exposure of HL60 cells, a promyelocytic leukemia cell line lacking the Philadelphia chromosome, can produce t(9;22) translocations.

View Article and Find Full Text PDF

The use of computed tomography (CT scans) has increased dramatically in recent decades, raising questions about the long-term safety of CT-emitted x-rays especially in infants who are more sensitive to radiation-induced effects. Cancer risk estimates for CT scans typically are extrapolated from models; therefore, new approaches measuring actual DNA damage are needed for improved estimations. Hence, changes in a dosimeter of DNA double-strand breaks, micronucleated reticulocytes (MN-RETs) measured by flow cytometry, were investigated in mice and infants exposed to CT scans.

View Article and Find Full Text PDF

Epidemiological studies of 1,3-butadiene have suggest that exposures to humans are associated with chronic myeloid leukemia (CML). CML has a well-documented association with ionizing radiation, but reports of associations with chemical exposures have been questioned. Ionizing radiation is capable of inducing the requisite CML-associated t(9:22) translocation (Philadelphia chromosome) in appropriate cells in vitro but, thus far, chemicals have not shown this capacity.

View Article and Find Full Text PDF

Human carcinogen 1,3-butadiene (BD) undergoes metabolic activation to 3,4-epoxy-1-butene (EB), hydroxymethylvinyl ketone (HMVK), 3,4-epoxy-1,2-butanediol (EBD) and 1,2,3,4-diepoxybutane (DEB). Among these, DEB is by far the most genotoxic metabolite and is considered the ultimate carcinogenic species of BD. We have shown previously that BD-exposed laboratory mice form 8- to 10-fold more DEB-DNA adducts than rats exposed at the same conditions, which may be responsible for the enhanced sensitivity of mice to BD-mediated cancer.

View Article and Find Full Text PDF

The events or factors that lead from normal cell function to conditions and diseases such as aging or cancer reflect complex interactions between cells and their environment. Cellular stress responses, a group of processes involved in homeostasis and adaptation to environmental change, contribute to cell survival under stress and can be resolved with damage avoidance or damage tolerance outcomes. To investigate the impact of environmental agents/conditions upon cellular stress response outcomes in epithelium, a novel quantitative assay, the "stress response resolution" (SRR) assay, was developed.

View Article and Find Full Text PDF

Cellular stress responses consist of a complex network of pathways and linked processes that, when perturbed, are postulated to have roles in the pathogenesis of various human diseases. To assess the impact of environmental insults upon this network, we developed a novel stress response resolution (SRR) assay for investigation of cellular stress resolution outcomes and the effects of environmental agents and conditions thereupon. SRR assay-based criteria identified three distinct groups of surviving cell clones, including those resembling parental cells, those showing Hprt/HPRT mutations, and a third type, "Phenotype-altered" clones, that occurred predominantly in cells pretreated with a chemical mutagen, was heterogeneous in nature, and expressed significant alterations in cell morphology and/or function compared with parental cells.

View Article and Find Full Text PDF

The generation of TCR proteins is the result of V(D)J recombinase-mediated genomic rearrangements at recombination signal sequences (RSS) in human lymphocytes. V(D)J recombinase can also mediate rearrangements at nonimmune or "cryptic" RSS in normal and leukemic human peripheral T cells. We previously demonstrated age- and gender-specific developmental differences in V(D)J coding joint processing at cryptic RSS within the HPRT locus in peripheral T cells from healthy children (Murray et al.

View Article and Find Full Text PDF

1,3-Butadiene (BD) is an important industrial and environmental chemical classified as a human carcinogen. The mechanism of BD-mediated cancer is of significant interest because of the widespread exposure of humans to BD from cigarette smoke and urban air. BD is metabolically activated to 1,2,3,4-diepoxybutane (DEB), which is a highly genotoxic and mutagenic bis-alkylating agent believed to be the ultimate carcinogenic species of BD.

View Article and Find Full Text PDF

1,3-Butadiene (BD) is a known rodent and human carcinogen that is metabolized mainly by P450 2E1 to three epoxides, 1,2-epoxy-3-butene (EB), 1,2:3,4-diepoxybutane (DEB) and 1,2-epoxy-3,4-butanediol (EB-diol). The individual epoxides vary up to 200-fold in their mutagenic potency, with DEB being the most mutagenic metabolite. It is important to understand the internal formation of the individual epoxides to assign the relative risk for each metabolite and to understand the molecular mechanisms responsible for major species differences in carcinogenicity.

View Article and Find Full Text PDF

The mutagenic and carcinogenic effects of 1,3-butadiene (BD*) are related to its bioactivation to several DNA-reactive metabolites, including 1,2-epoxy-3-butene (BDO), 1,2,3,4-diepoxybutane (BDO2), and 1,2-dihydroxy-3,4-epoxybutane (BDO-diol). Accumulated evidence indicates that stereochemical configurations of BD metabolites may play a role in the mutagenic and carcinogenic action of BD. The objective of this study was to evaluate the cytotoxicity and mutagenicity of each stereoisomer of major BD metabolites in human cells.

View Article and Find Full Text PDF

1,3-Butadiene (BD) is an important industrial and environmental chemical classified as a human carcinogen on the basis of epidemiological evidence for an increased incidence of leukemia in workers occupationally exposed to BD and its carcinogenicity in laboratory rats and mice. BD is metabolically activated to epoxide intermediates that can react with nucleophilic sites of cellular biomolecules. Among these, 1,2,3,4-diepoxybutane (DEB) is considered the ultimate carcinogenic species of BD due to its potent genotoxicity and mutagenicity attributed to the ability to form DNA-DNA cross-links and exocyclic nucleoside adducts.

View Article and Find Full Text PDF

1,3-Butadiene (BD) is a known rodent and human carcinogen that is metabolized mainly by P450 2E1 to three epoxides, 1,2-epoxy-3-butene (EB), 1,2:3,4-diepoxybutane (DEB), and 1,2-epoxy-3,4-butanediol. The individual epoxides vary up to 200-fold in their mutagenic potency, with DEB being the most mutagenic metabolite. It is important to understand the internal formation of the individual epoxides to assign the relative risk for each metabolite and to understand the molecular mechanisms responsible for extensive species differences in carcinogenicity.

View Article and Find Full Text PDF

To delineate temporal changes in the integrity and function of mitochondria/cardiomyocytes in hearts from mice exposed in utero to commonly used nucleoside analogs (NRTIs), CD-1 mice were exposed in utero to 80 mg AZT/kg, 40 mg 3TC/kg, 80 mg AZT/kg plus 40 mg 3TC/kg, or vehicle alone during days 12-18 of gestation and hearts from female mouse offspring were examined at 13 and 26 weeks postpartum. Alterations in cardiac mitochondrial DNA (mtDNA) content, oxidative phosphorylation (OXPHOS) enzyme activities, mtDNA mutations, and echocardiography of NRTI-exposed mice were assessed and compared with findings in vehicle-exposed control mice. A hybrid capture-chemiluminescence assay showed significant twofold increases in mtDNA levels in hearts from AZT- and AZT/3TC-exposed mice at 13 and 26 weeks postpartum, consistent with near doubling in mitochondrial numbers over time compared with vehicle-exposed mice.

View Article and Find Full Text PDF

The current study was designed to delineate temporal changes in cardiomyocytes and mitochondria at the light and electron microscopic levels in hearts of mice exposed transplacentally to commonly used nucleoside analogs (NRTIs). Pregnant CD-1 mice were given 80 mg AZT/kg, 40 mg 3TC/kg, 80 mg AZT/kg plus 40 mg 3TC/kg, or vehicle alone during the last 7 days of gestation, and hearts from female mouse pups were examined at 13 and 26 weeks postpartum for histopathological or ultrastructural changes in cross-sections of both the ventricles and the interventricular septum. Using light microscopy and special staining techniques, transplacental exposure to AZT, 3TC, or AZT/3TC was shown to induce significant histopathological changes in myofibrils; these changes were more widespread at 13 weeks than at 26 weeks postpartum.

View Article and Find Full Text PDF

Hprt mutant frequency and p53 gene status were assessed in wild-type and p53 heterozygous (p53+/-) mice exposed chronically by inhalation to benzene. Benzene exposures to 100 ppm for 6h on Monday-Friday, 100 ppm for 10h on Monday-Wednesday-Friday, or 200 ppm for 5h on Monday-Wednesday-Friday yielded the same total exposures (concentration x time) of 3000 ppm x h/week. Hprt mutations in splenic T-lymphocytes were significantly increased in all benzene groups, ranging from 3.

View Article and Find Full Text PDF

Current risk assessments of 1,3-butadiene (BD*) are complicated by limited evidence of its carcinogenicity in humans. Hence, there is a critical need to identify early events and factors that account for the heightened sensitivity of mice to BD-induced carcinogenesis and to deter-mine which animal model, mouse or rat, is the more useful surrogate of potency for predicting health effects in BD-exposed humans. HEI sponsored an earlier investigation of mutagenic responses in mice and rats exposed to BD, or to the racemic mixture of 1,2-epoxy-3-butene (BDO) or of 1,2,3,4-diepoxybutane (BDO2; Walker and Meng 2000).

View Article and Find Full Text PDF

Background: WR1065 is the free-thiol metabolite of the cytoprotective aminothiol amifostine, which is used clinically at very high doses to protect patients against toxicity induced by radiation and chemotherapy. In an earlier study we briefly reported that the aminothiol WR1065 also inhibits HIV-1 replication in phytohemagglutinin (PHA)-stimulated human T-cell blasts (TCBs) infected in culture for 2 hr before WR1065 exposure. In this study we expanded the original observations to define the dose-response curve for that inhibition, and address the question of additive effects for the combination of WR1065 plus Zidovudine (AZT).

View Article and Find Full Text PDF

This perspective first considers the potential impact of the Viracept-EMS case in the framework of the current understanding of the low-dose effects of DNA-reactive chemicals and the approaches used to estimate health risks from genotoxins occurring as impurities in pharmaceutical products or as contaminants in the environment or workplace. It also presents an outlook on the nature of additional research building upon the Viracept-EMS case to test assumptions underlying thresholded dose-response relationships and to establish biologically based risk assessment models in lieu of default models for DNA-reactive compounds.

View Article and Find Full Text PDF

The success of nucleoside reverse transcriptase inhibitors (NRTIs) in treating HIV-1 infection and reducing mother-to-child transmission of the virus during pregnancy is accompanied by evidence that NRTIs cause long-term health risks for cancer and mitochondrial disease. Thus, agents that mitigate toxicities of the current combination drug therapies are needed. Previous work had shown that the NRTI-drug pair zidovudine (AZT)-didanosine (ddI) was highly cytotoxic and mutagenic; thus, we conducted preliminary studies to investigate the ability of the active moiety of amifostine, WR1065, to protect against the deleterious effects of this NRTI-drug pair.

View Article and Find Full Text PDF

1,3-Butadiene (BD) is an important industrial and environmental chemical classified as a human carcinogen based on epidemiologic studies in occupationally exposed workers and animal studies in laboratory rats and mice. BD is metabolically activated to three epoxides that can react with nucleophilic sites in biomolecules. Among these, 1,2,3,4-diepoxybutane (DEB) is considered the ultimate carcinogen due to its high genotoxicity and mutagenicity attributed to its ability to form DNA-DNA cross-links.

View Article and Find Full Text PDF