Publications by authors named "Vernie Daniels"

Medications have been a part of space travel dating back to the Apollo missions. Currently, medical kits aboard the International Space Station (ISS) contain medications and supplies to treat a variety of possible medical events. As we prepare for more distant exploration missions to Mars and beyond, risk management planning for astronaut healthcare should include the assembly of a medication formulary that is comprehensive enough to prevent or treat anticipated medical events, remains safe and chemically stable, and retains sufficient potency to last for the duration of the mission.

View Article and Find Full Text PDF

As human spaceflight seeks to expand beyond low-Earth orbit, NASA and its international partners face numerous challenges related to ensuring the safety of their astronauts, including the need to provide a safe and effective pharmacy for long-duration spaceflight. Historical missions have relied upon frequent resupply of onboard pharmaceuticals; as a result, there has been little study into the effects of long-term exposure of pharmaceuticals to the space environment. Of particular concern are the long-term effects of space radiation on drug stability, especially as missions venture away from the protective proximity of the Earth.

View Article and Find Full Text PDF

In order to maintain crew health and performance during long-duration spaceflight outside of low-Earth orbit, NASA and its international partners must be capable of providing a safe and effective pharmacy. Given few directed studies of pharmaceuticals in the space environment, it is difficult to characterize pharmaceutical effectiveness or stability during spaceflight; this in turn makes it challenging to select an appropriate formulary for exploration. Here, we present the current state of literature regarding pharmaceutical stability, metabolism, and effectiveness during spaceflight.

View Article and Find Full Text PDF

Astronauts experience Space Motion Sickness requiring treatment with an anti-motion sickness medication, scopolamine during space missions. Bioavailability after oral administration of scopolamine is low and variable, and absorption form transdermal patch is slow and prolonged. Intranasal administration achieves faster absorption and higher bioavailability of drugs that are subject to extrahepatic, first pass metabolism after oral dosing.

View Article and Find Full Text PDF

Efficacy and safety of medications used for the treatment of astronauts in space may be compromised by altered stability in space. We compared physical and chemical changes with time in 35 formulations contained in identical pharmaceutical kits stowed on the International Space Station (ISS) and on Earth. Active pharmaceutical content (API) was determined by ultra- and high-performance liquid chromatography after returning to Earth.

View Article and Find Full Text PDF