Publications by authors named "Vernadette Simon"

DNMT3A and TET2 are epigenetic regulator genes commonly mutated in age-related clonal hematopoiesis (CH). Despite having opposed epigenetic functions, these mutations are associated with increased all-cause mortality and a low risk for progression to hematological neoplasms. While individual impacts on the epigenome have been described using different model systems, the phenotypic complexity in humans remains to be elucidated.

View Article and Find Full Text PDF

Background: Gut L-type enteroendocrine cells (EECs) are intestinal chemosensory cells that secrete satiety hormones GLP-1 and PYY in response to activation of G-protein coupled receptors (GPCRs) by luminal components of nutrient digestion and microbial fermentation. Regulator of G-protein Signaling (RGS) proteins are negative regulators of GPCR signaling. The expression profile of RGS in EECs, and their potential role in satiety hormone secretion and obesity is unknown.

View Article and Find Full Text PDF

Understanding the diversity of gastrointestinal (GI) immune cells, especially in the muscularis propria, is crucial for understanding their role in the maintenance of enteric neurons and smooth muscle and their contribution to GI motility. Here, we present a detailed protocol for isolating single immune cells from the human gastric muscularis propria. We describe steps for tissue preservation, dissection, and dissociation of the muscularis propria.

View Article and Find Full Text PDF

Multiple Myeloma (MM) remains incurable despite advances in treatment options. Although tumor subtypes and specific DNA abnormalities are linked to worse prognosis, the impact of immune dysfunction on disease emergence and/or treatment sensitivity remains unclear. We established a harmonized consortium to generate an Immune Atlas of MM aimed at informing disease etiology, risk stratification, and potential therapeutic strategies.

View Article and Find Full Text PDF

Background & Aims: Proapoptotic tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling as a cause of cancer cell death is a well-established mechanism. However, TRAIL-receptor (TRAIL-R) agonists have had very limited anticancer activity in human beings, challenging the concept of TRAIL as a potent anticancer agent. Herein, we aimed to define mechanisms by which TRAIL cancer cells can leverage noncanonical TRAIL signaling in myeloid-derived suppressor cells (MDSCs) promoting their abundance in murine cholangiocarcinoma (CCA).

View Article and Find Full Text PDF
Article Synopsis
  • The snATAC + snRNA platform allows researchers to analyze open chromatin and gene expression at a single-cell level, emphasizing the importance of high-quality nuclei isolation.
  • Different nuclei isolation methods were tested on human tissue samples, particularly peripheral blood mononuclear cells and ovarian cancer tissues, revealing that NP-40 detergent-based isolation provided superior sequencing results compared to collagenase tissue dissociation.
  • The study confirmed that both frozen and fresh sample preparations yield high-quality data, and it highlighted the effectiveness of using both scRNA and snRNA for accurate cell type identification in multiomic assays.
View Article and Find Full Text PDF

Proapoptotic tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling as a cause of cancer cell death is a well-established mechanism. However, TRAIL-receptor (TRAIL-R) agonists have had very limited anticancer activity in humans, challenging the concept of TRAIL as a potent anticancer agent. Herein, we demonstrate that TRAIL cancer cells can leverage noncanonical TRAIL signaling in myeloid-derived suppressor cells (MDSCs) promoting their abundance in murine cholangiocarcinoma (CCA).

View Article and Find Full Text PDF

The heterogeneity of the human intestinal epithelium has hindered the understanding of the pathophysiology of distinct specialized cell types on a single-cell basis in disease states. Described here is a workflow for the cryopreservation of endoscopically obtained human intestinal mucosal biopsies, subsequent preparation of this tissue to yield highly viable fluorescence-activated cell sorting (FACS)isolated human intestinal epithelial cell (IEC) single-cell suspensions compatible with successful library preparation and deep single-cell RNA sequencing (scRNAseq). We validated this protocol in deep scRNAseq of 59,653 intestinal cells in 10 human participants.

View Article and Find Full Text PDF

Background: Medulloblastoma (MB) and diffuse infiltrative pontine glioma (DIPG) are malignant pediatric tumors. Extracellular vesicles (EVs) and their bioactive cargoes have been implicated in tumorigenesis. Most studies have focused on adult tumors, therefore the role of EVs and the noncoding RNA (ncRNA) landscape in pediatric brain tumors is not fully characterized.

View Article and Find Full Text PDF

Lung adenocarcinomas from never smokers account for approximately 15 to 20% of all lung cancers and these tumors often carry genetic alterations that are responsive to targeted therapy. Here we examined mutation status in 10 oncogenes among 89 lung adenocarcinomas from never smokers. We also screened for oncogene fusion transcripts in 20 of the 89 tumors by RNA-Seq.

View Article and Find Full Text PDF

MicroRNAs play a role in regulating diverse biological processes and have considerable utility as molecular markers for diagnosis and monitoring of human disease. Several technologies are available commercially for measuring microRNA expression. However, cross-platform comparisons do not necessarily correlate well, making it difficult to determine which platform most closely represents the true microRNA expression level in a tissue.

View Article and Find Full Text PDF

Background: MicroRNAs (miRNAs) represent a growing class of small non-coding RNAs that are important regulators of gene expression in both plants and animals. Studies have shown that miRNAs play a critical role in human cancer and they can influence the level of cell proliferation and apoptosis by modulating gene expression. Currently, methods for the detection and measurement of miRNA expression include small and moderate-throughput technologies, such as standard quantitative PCR and microarray based analysis.

View Article and Find Full Text PDF