Publications by authors named "Vern L Schramm"

causes life-threatening diarrhea and is one of the leading causes of nosocomial infections. During infection, releases two gut-damaging toxins, TcdA and TcdB, which are the primary determinants of disease pathogenesis and are important therapeutic targets. Once in the cytosol of mammalian cells, TcdA and TcdB use UDP-glucose to glucosylate host Rho GTPases, which leads to cytoskeletal changes that result in a loss of intestinal integrity.

View Article and Find Full Text PDF

Homozygous 5'-methylthioadenosine phosphorylase (MTAP) deletions occur in approximately 15% of human cancers. Co-deletion of MTAP and methionine adenosyltransferase 2 alpha (MAT2a) induces a synthetic lethal phenotype involving protein arginine methyltransferase 5 (PRMT5) inhibition. MAT2a inhibitors are now in clinical trials for genotypic MTAP cancers, however the MTAP genotype represents fewer than 2% of human colorectal cancers (CRCs), limiting the utility of MAT2a inhibitors in these and other MTAP cancers.

View Article and Find Full Text PDF

Purine nucleoside phosphorylases (PNPs) catalyze the phosphorolysis of 6-oxypurine nucleosides with an HPO dianion nucleophile. Nucleosides and phosphate occupy distinct pockets in the PNP active site. Evaluation of the HPO site by mutagenesis, cooperative binding studies, and thermodynamic and structural analysis demonstrate that alterations in the HPO binding site can render PNP inactive and significantly impact subunit cooperativity and binding to transition-state analogue inhibitors.

View Article and Find Full Text PDF

5'-Methylthioadenosine/-adenosylhomocysteine nucleosidase from (MTAN) demonstrated faster chemistry when expressed as an isotopically heavy protein, with H, C, and N replacing the bulk of normal isotopes. The inverse heavy enzyme isotope effect has been attributed to improved enzyme-reactant interactions causing more frequent transition-state formation ( 2021, 118, e2109118118). Transition-state analogues stabilize the transient dynamic geometry of the transition state and inform on transition-state dynamics.

View Article and Find Full Text PDF

causes life-threatening diarrhea and is the leading cause of healthcare associated bacterial infections in the United States. During infection, releases the gut-damaging toxins, TcdA and TcdB, the primary determinants of disease pathogenesis and are therefore therapeutic targets. TcdA and TcdB contain a glycosyltransferase domain that uses UDP-glucose to glycosylate host Rho GTPases, causing cytoskeletal changes that result in a loss of intestinal integrity.

View Article and Find Full Text PDF

Phenylethanolamine -methyltransferase (PNMT) catalyzes the -adenosyl-l-methionine (SAM)-dependent methylation of norepinephrine to form epinephrine. Epinephrine is implicated in the regulation of blood pressure, respiration, Alzheimer's disease, and post-traumatic stress disorder (PTSD). Transition-state (TS) analogues bind their target enzymes orders of magnitude more tightly than their substrates.

View Article and Find Full Text PDF

Methylthio-DADMe-immucillin-A (MTDIA) is an 86 picomolar inhibitor of 5'-methylthioadenosine phosphorylase (MTAP) with potent and specific anti-cancer efficacy. MTAP salvages S-adenosylmethionine (SAM) from 5'-methylthioadenosine (MTA), a toxic metabolite produced during polyamine biosynthesis. Changes in MTAP expression are implicated in cancer growth and development, making MTAP an appealing target for anti-cancer therapeutics.

View Article and Find Full Text PDF

5'-Methylthioadenosine nucleosidases (MTANs) catalyze the hydrolysis of 5'-substituted adenosines to form adenine and 5-substituted ribose. MTAN (MTAN) and MTAN (MTAN) form late and early transition states, respectively. Transition state analogues designed for the late transition state bind with fM to pM affinity to both classes of MTANs.

View Article and Find Full Text PDF

2'-Deoxynucleoside 5'-monophosphate N-glycosidase 1 (DNPH1) hydrolyzes the epigenetically modified nucleotide 5-hydroxymethyl 2'-deoxyuridine 5'-monophosphate (hmdUMP) derived from DNA metabolism. Published assays of DNPH1 activity are low throughput, use high concentrations of DNPH1, and have not incorporated or characterized reactivity with the natural substrate. We describe the enzymatic synthesis of hmdUMP from commercially available materials and define its steady-state kinetics with DNPH1 using a sensitive, two-pathway enzyme coupled assay.

View Article and Find Full Text PDF

is found in the gut lining of more than half of the world's population, causes gastric ulcers, and contributes to stomach cancers. Menaquinone synthesis in relies on the rare futalosine pathway, where 5'-methylthioadenosine nucleosidase (MTAN) is proposed to play an essential role. Transition state analogues of MTAN, including BuT-DADMe-ImmA (BTDIA) and MeT-DADMe-ImmA (MTDIA), exhibit bacteriostatic action against numerous diverse clinical isolates of with minimum inhibitory concentrations (MIC's) of <2 ng/mL.

View Article and Find Full Text PDF

hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) is essential for purine salvage of hypoxanthine into parasite purine nucleotides. Transition state analogue inhibitors of HGXPRT are characterized by kinetic analysis, thermodynamic parameters, and X-ray crystal structures. Compound , 9-deazaguanine linked to an acyclic ribocation phosphonate mimic, shows a kinetic of 0.

View Article and Find Full Text PDF

Phosphate groups play essential roles in biological processes, including retention inside biological membranes. Phosphodiesters link nucleic acids, and the reversible transfer of phosphate groups is essential in energy metabolism and cell-signalling processes. Phosphorylated metabolic intermediates are known targets for metabolic and disease-related disorders, and the enzymes involved in these pathways recognize phosphate groups in their catalytic sites.

View Article and Find Full Text PDF

Chagas disease, caused by the parasitic protozoan , affects over 8 million people worldwide. Current antiparasitic treatments for Chagas disease are ineffective in treating advanced, chronic stages of the disease, and are noted for their toxicity. Like most parasitic protozoa, is unable to synthesize purines , and relies on the salvage of preformed purines from the host.

View Article and Find Full Text PDF

Toxins TcdA and TcdB from glucosylate human colon Rho GTPases. TcdA and TcdB glucosylation of RhoGTPases results in cytoskeletal changes, causing cell rounding and loss of intestinal integrity. Clostridial toxins TcdA and TcdB are proposed to catalyze glucosylation of Rho GTPases with retention of stereochemistry from UDP-glucose.

View Article and Find Full Text PDF

Hypermethylation of CpG regions by human DNA methyltransferase 1 (DNMT1) silences tumor-suppression genes, and inhibition of DNMT1 can reactivate silenced genes. The 5-azacytidines are approved inhibitors of DNMT1, but their mutagenic mechanism limits their utility. A synthon approach from the analogues of -adenosylhomocysteine, methionine, and deoxycytidine recapitulated the chemical features of the DNMT1 transition state in the synthesis of 16 chemically stable transition-state mimics.

View Article and Find Full Text PDF

Clostridium difficile causes life-threatening diarrhea and is the leading cause of healthcare-associated bacterial infections in the United States. TcdA and TcdB bacterial toxins are primary determinants of disease pathogenesis and are attractive therapeutic targets. TcdA and TcdB contain domains that use UDP-glucose to glucosylate and inactivate host Rho GTPases, resulting in cytoskeletal changes causing cell rounding and loss of intestinal integrity.

View Article and Find Full Text PDF

Human methionine adenosyltransferase MAT2A provides -adenosyl-l-methionine (AdoMet) for methyl-transfer reactions. Epigenetic methylations influence expression patterns in development and in cancer. Transition-state analysis and kinetic studies have described the mechanism of AdoMet and triphosphate formation at the catalytic site.

View Article and Find Full Text PDF

Heavy enzyme isotope effects occur in proteins substituted with H-, C-, and N-enriched amino acids. Mass alterations perturb femtosecond protein motions and have been used to study the linkage between fast motions and transition-state barrier crossing. Heavy enzymes typically show slower rates for their chemical steps.

View Article and Find Full Text PDF

is a Gram-negative bacterium that is responsible for gastric and duodenal ulcers. uses the unusual pathway with aminofutalosine (AFL) as an intermediate for menaquinone biosynthesis. Previous reports indicate that hydrolysis of AFL by 5'-methylthioadenosine nucleosidase (MTAN) is the direct path for producing downstream metabolites in the pathway.

View Article and Find Full Text PDF

A mouse model of human Familial Adenomatous Polyposis responds favorably to pharmacological inhibition of 5'-methylthioadenosine phosphorylase (MTAP). Methylthio-DADMe-Immucillin-A (MTDIA) is an orally available, transition state analogue inhibitor of MTAP. 5'-Methylthioadenosine (MTA), the substrate for MTAP, is formed in polyamine synthesis and is recycled by MTAP to S-adenosyl-L-methionine (SAM) via salvage pathways.

View Article and Find Full Text PDF

-Adenosyl-l-methionine (AdoMet) is synthesized by the MAT2A isozyme of methionine adenosyltransferase in most human tissues and in cancers. Its contribution to epigenetic control has made it a target for anticancer intervention. A recent kinetic isotope effect analysis of MAT2A demonstrated a loose nucleophilic transition state.

View Article and Find Full Text PDF

Plasmodium falciparum purine nucleoside phosphorylase (PfPNP) catalyzes an essential step in purine salvage for parasite growth. 4'-Deaza-1'-Aza-2'-Deoxy-1'-(9-Methylene)-Immucillin-G (DADMe-ImmG) is a transition state analog inhibitor of this enzyme, and P. falciparum infections in an Aotus primate malaria model can be cleared by oral administration of DADMe-ImmG.

View Article and Find Full Text PDF

Recent experimental studies engaging isotopically substituted protein (heavy protein) have revealed that many, but not all, enzymatic systems exhibit altered chemical steps in response to an altered mass. The results have been interpreted as femtosecond protein dynamics at the active site being linked (or not) to transition-state barrier crossing. An altered enzyme mass can influence several kinetic parameters (, , and ) in amounts of ≤30% relative to light enzymes.

View Article and Find Full Text PDF

Phenylethanolamine -methyltransferase (PNMT) is a critical enzyme in catecholamine synthesis. It transfers the methyl group of -adenosylmethionine (SAM) to catalyze the synthesis of epinephrine from norepinephrine. Epinephrine has been associated with diverse human processes, including the regulation of blood pressure and respiration, as well as neurodegeneration found in Alzheimer's disease.

View Article and Find Full Text PDF

Ricin toxin A subunit (RTA) removes an adenine from the universally conserved sarcin/ricin loop (SRL) on eukaryotic ribosomes, thereby inhibiting protein synthesis. No high affinity and selective small molecule therapeutic antidotes have been reported against ricin toxicity. RTA binds to the ribosomal P stalk to access the SRL.

View Article and Find Full Text PDF