Electrical four-terminal sensing at (sub-)micrometer scales enables the characterization of key electromagnetic properties within the semiconductor industry, including materials' resistivity, Hall mobility/carrier density, and magnetoresistance. However, as devices' critical dimensions continue to shrink, significant over/underestimation of properties due to a by-product Joule heating of the probed volume becomes increasingly common. Here, we demonstrate how self-heating effects can be quantified and compensated for via 3ω signals to yield zero-current transfer resistance.
View Article and Find Full Text PDFIn this article, we show how relativistic α-stable processes can be used to explain quasiballistic heat conduction in semiconductors. This is a method that can fit experimental results of ultrafast laser heating in alloys. It also provides a connection to a rich literature on the Feynman-Kac formalism and random processes that transition from a stable Lévy process on short time and length scales to the Brownian motion at larger scales.
View Article and Find Full Text PDFUnderstanding nanoscale thermal transport is of substantial importance for designing contemporary semiconductor technologies. Heat removal from small sources is well established to be severely impeded compared to diffusive predictions due to the ballistic nature of the dominant heat carriers. Experimental observations are commonly interpreted through a reduction of effective thermal conductivity, even though most measurements only probe a single aggregate thermal metric.
View Article and Find Full Text PDFThe anisotropic basal-plane thermal conductivities of thin black phosphorus obtained from a new four-probe measurement exhibit much higher peak values at low temperatures than previous reports. First principles calculations reveal the important role of crystal defects and weak thickness dependence that is opposite to the case of graphene and graphite due to the absence of reflection symmetry in puckered phosphorene.
View Article and Find Full Text PDFMaterials with embedded nanoparticles are of considerable interest for thermoelectric applications. Here, we experimentally characterize the effect of nanoparticles on the recently discovered Lévy phonon transport in semiconductor alloys. The fractal space dimension α ≈ 1.
View Article and Find Full Text PDFThe metal to insulator transition (MIT) of strongly correlated materials is subject to strong lattice coupling, which brings about the unique one-dimensional alignment of metal-insulator (M-I) domains along nanowires or nanobeams. Many studies have investigated the effects of stress on the MIT and hence the phase boundary, but few have directly examined the temperature profile across the metal-insulating interface. Here, we use thermoreflectance microscopy to create two-dimensional temperature maps of single-crystalline VO2 nanobeams under external bias in the phase coexisting regime.
View Article and Find Full Text PDFA prospective study was conducted in 224 patients to determine the clinical significance of esophageal colonization with yeasts under different conditions. In accordance with the results of direct smear microscopic examination and culture of esophageal brushings, patients were divided into three groups: positive, negative, and the patients, in whom saprophytic forms were detected. A higher prevalence of positive findings was noted in patients with predisposing factors for yeast invasion than in patients free of underlying disease.
View Article and Find Full Text PDF