Unlabelled: The stoichiometry of photosystem II (PSII) and photosystem I (PSI) varies between photoautotrophic organisms. The cyanobacterium sp. PCC 6803 maintains two- to fivefold more PSI than PSII reaction center complexes, and we sought to modify this stoichiometry by changing the promoter region of the operon.
View Article and Find Full Text PDFLight-activated photosystem II (PSII) carries out the critical step of splitting water in photosynthesis. However, PSII is susceptible to light-induced damage. Here, results are presented from a novel microbial electro-photosynthetic system (MEPS) that uses redox mediators in conjunction with an electrode to drive electron transport in live (Δ) cells lacking PSII.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2015
The world's crop productivity is stagnating whereas population growth, rising affluence, and mandates for biofuels put increasing demands on agriculture. Meanwhile, demand for increasing cropland competes with equally crucial global sustainability and environmental protection needs. Addressing this looming agricultural crisis will be one of our greatest scientific challenges in the coming decades, and success will require substantial improvements at many levels.
View Article and Find Full Text PDFMutation of Arabidopsis thaliana NAD(P)H DEHYDROGENASE C1 (NDC1; At5g08740) results in the accumulation of demethylphylloquinone, a late biosynthetic intermediate of vitamin K1. Gene coexpression and phylogenomics analyses showed that conserved functional associations occur between vitamin K biosynthesis and NDC1 homologs throughout the prokaryotic and eukaryotic lineages. Deletion of Synechocystis ndbB, which encodes for one such homolog, resulted in the same defects as those observed in the cyanobacterial demethylnaphthoquinone methyltransferase knockout.
View Article and Find Full Text PDFA traditional 2-oxoglutarate dehydrogenase complex is missing in the cyanobacterial tricarboxylic acid cycle. To determine pathways that convert 2-oxoglutarate into succinate in the cyanobacterium Synechocystis sp. PCC 6803, a series of mutant strains, Δsll1981, Δslr0370, Δslr1022 and combinations thereof, deficient in 2-oxoglutarate decarboxylase (Sll1981), succinate semialdehyde dehydrogenase (Slr0370), and/or in γ-aminobutyrate metabolism (Slr1022) were constructed.
View Article and Find Full Text PDFSll1951 is the surface layer (S-layer) protein of the cyanobacterium Synechocystis sp. strain PCC 6803. This large, hemolysin-like protein was found in the supernatant of a strain that was deficient in S-layer attachment.
View Article and Find Full Text PDFPhotosynth Res
November 2013
Transmission electron microscopy has been used to identify poly-3-hydroxybutyrate (PHB) granules in cyanobacteria for over 40 years. Spherical inclusions inside the cell that are electron-transparent and/or slightly electron-dense and that are found in transmission electron micrographs of cyanobacteria are generally assumed to be PHB granules. The aim of this study was to test this assumption in different strains of the cyanobacterium Synechocystis sp.
View Article and Find Full Text PDFAppl Environ Microbiol
October 2013
ClpB1 is a heat shock protein known to disaggregate large protein complexes. Constitutive, 16-fold ClpB1 overproduction in the cyanobacterium Synechocystis sp. strain PCC 6803 increased cell survival by 20-fold when cultures were heated quickly (1°C/s) to 50°C and delayed cell death by an average of 3 min during incubation at high temperatures (>46°C).
View Article and Find Full Text PDFLight harvesting provides a major challenge in the production of biofuels from microorganisms; while sunlight provides the energy necessary for biomass/biofuel production, at the same time it damages the cells. The genome of Synechocystis sp. PCC 6803 was searched for open reading frames that might code for yet unidentified chlorophyll-binding proteins with low molecular mass that could be involved in stress-adaptation.
View Article and Find Full Text PDFCells of Synechocystis sp. PCC 6803 lacking photosystem I (PSI-less) and containing only photosystem II (PSII) or lacking both photosystems I and II (PSI/PSII-less) were compared to wild type (WT) cells to investigate the role of the photosystems in the architecture, structure, and number of thylakoid membranes. All cells were grown at 0.
View Article and Find Full Text PDFThe half-life times of photosystem I and II proteins were determined using (15)N-labeling and mass spectrometry. The half-life times (30-75h for photosystem I components and <1-11h for the large photosystem II proteins) were similar when proteins were isolated from monomeric vs. oligomeric complexes on Blue-Native gels, suggesting that the two forms of both photosystems can interchange on a timescale of <1h or that only one form of each photosystem exists in thylakoids in vivo.
View Article and Find Full Text PDFTo gain insight in the lifetimes of photosystem II (PSII) chlorophyll and proteins, a combined stable isotope labeling (15N)/mass spectrometry method was used to follow both old and new pigments and proteins. Photosystem I-less Synechocystis cells were grown to exponential or post-exponential phase and then diluted in BG-11 medium with [15N]ammonium and [15N]nitrate. PSII was isolated, and the masses of PSII protein fragments and chlorophyll were determined.
View Article and Find Full Text PDFMicroalgae can be cultured in photobioreactors to sequester carbon dioxide and produce potentially valuable biomaterials. The goal of the present study was to identify and utilize microalgal strains that are capable of tolerating up to 20% CO2 (gas phase) concentrations under variable light or flue-gas blend conditions and reactor configurations to produce biomass. Scenedesmus sp.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2010
Our purpose is to apply a fatty acid secretion strategy in photosynthetic microbial biofuel production, which will avoid the costly biomass recovery processes currently applied in algal biofuel systems. Starting with introducing acyl-acyl carrier protein thioesterases, we made five successive generations of genetic modifications into cyanobacterium Synechocystis sp. PCC 6803.
View Article and Find Full Text PDFHydrogen gas provides exceptional value as an energy carrier and industrial feedstock, but currently is produced entirely by reforming fossil fuels. Biological hydrogen production (BioH(2)), which offers the possibility of being renewable and carbon neutral, can be achieved by photosynthesis, fermentation, and microbial electrolysis cells. This review introduces the principles, advantages and challenges of each approach to BioH(2).
View Article and Find Full Text PDFCyanobacteria are capable of using dissipation of phycobilisome-absorbed energy into heat as part of their photoprotective strategy. Non-photochemical quenching in cyanobacteria cells is triggered by absorption of blue-green light by the carotenoid-binding protein, and involves quenching of phycobilisome fluorescence. In this study, we find direct evidence that the quenching is accompanied by a considerable reduction of energy flow to the photosystems.
View Article and Find Full Text PDFTo elucidate the biosynthetic pathways of carotenoids, especially myxol 2'-glycosides, in cyanobacteria, Anabaena sp. strain PCC 7120 (also known as Nostoc sp. strain PCC 7120) and Synechocystis sp.
View Article and Find Full Text PDFHyperspectral confocal fluorescence imaging provides the opportunity to obtain individual fluorescence emission spectra in small ( approximately 0.03-microm(3)) volumes. Using multivariate curve resolution, individual fluorescence components can be resolved, and their intensities can be calculated.
View Article and Find Full Text PDFIsotope (Na(15)NO(3), ((15)NH(4))SO(4) or [(13)C]glucose) labeling was used to analyze chlorophyll synthesis and degradation rates in a set of Synechocystis mutants that lacked single or multiple small Cab-like proteins (SCPs), as well as photosystem I or II. When all five small Cab-like proteins were inactivated in the wild-type background, chlorophyll stability was not affected unless the scpABCDE(-) strain was grown at a moderately high light intensity of 100-300 micromol photons m(-2) s(-1). However, the half-life time of chlorophyll was 5-fold shorter in the photosystem I-less/scpABCDE(-) strain than in the photosystem I-less strain even when grown at low light intensity (~3 micromol photons m(-2) s(-1)) (32 +/- 5 and 161 +/- 25 h, respectively).
View Article and Find Full Text PDFThe cyanobacterial small CAB-like proteins (SCPs) are one-helix proteins with compelling similarity to the first and third transmembrane helix of proteins belonging to the CAB family of light-harvesting complex proteins in plants. The SCP proteins are transiently expressed at high light intensity and other stress conditions but their exact function remains largely unknown. Recently we showed association of ScpD with light-stressed, monomeric Photosystem II in Synechocystis sp.
View Article and Find Full Text PDFChlorophyll synthesis and degradation were analyzed in the cyanobacterium Synechocystis sp. PCC 6803 by incubating cells in the presence of 13C-labeled glucose or 15N-containing salts. Upon mass spectral analysis of chlorophyll isolated from cells grown in the presence of 13C-glucose for different time periods, four chlorophyll pools were detected that differed markedly in the amount of 13C incorporated into the porphyrin (Por) and phytol (Phy) moieties of the molecule.
View Article and Find Full Text PDFTo determine the mechanism of carotenoid-sensitized non-photochemical quenching in cyanobacteria, the kinetics of blue-light-induced quenching and fluorescence spectra were studied in the wild type and mutants of Synechocystis sp. PCC 6803 grown with or without iron. The blue-light-induced quenching was observed in the wild type as well as in mutants lacking PS II or IsiA confirming that neither IsiA nor PS II is required for carotenoid-triggered fluorescence quenching.
View Article and Find Full Text PDFThe cyanobacterial small CAB-like proteins (SCPs) consist of one-helix proteins that resemble transmembrane regions of the light-harvesting proteins of plants. To determine whether these proteins are associated with protein complexes in the thylakoid membrane, an abundant member of the SCP family, ScpD, was marked with a His tag, and proteins co-isolating with His-tagged ScpD were identified. These proteins included the major Photosystem (PS) II components as well as FtsH, which is involved in degradation of the PSII complex.
View Article and Find Full Text PDFUpon depletion of Sll0254 in Synechocystis sp. strain PCC 6803, cyclized carotenoids were replaced by linear, relatively hydrophilic carotenoids, and the amount of the two photosystems decreased greatly. Full segregants of the sll0254 deletion in Synechocystis were not obtained, implying that this gene is essential for survival, most likely to allow normal cell division.
View Article and Find Full Text PDFA Synechocystis sp. strain PCC 6803 mutant lacking CtaI, a main subunit of cytochrome c oxidase, is not capable of growing at light intensities below 5 micromol photons m(-2) s(-1), presumably due to an overreduced plastoquinone pool in the thylakoid membrane. Upon selection for growth at light intensities below 5 micromol photons m(-2) s(-1), a secondary mutant was generated that retained the CtaI deletion and had fully assembled photosystem II complexes; in this secondary mutant (pseudorevertant), oxygen evolution and respiratory activities were similar to those in the wild type.
View Article and Find Full Text PDF